Questions concerning Khintchine's constant and the efficient computation of regular continued fractions

Authors:
John W. Wrench, Jr. and Daniel Shanks

Journal:
Math. Comp. **20** (1966), 444-448

DOI:
https://doi.org/10.1090/S0025-5718-66-99920-0

Corrigendum:
Math. Comp. **21** (1967), 130.

Full-text PDF Free Access

References | Additional Information

**[1]**Daniel Shanks, (Reviewer),**RMT**11, 12, (Review of two translations of Khintchine's*Continued Fractions), Math. Comp.*, v. 20, 1966, pp. 171-173.**[2]**Daniel Shanks and J. W. Wrench Jr.,*Khintchine’s constant*, Amer. Math. Monthly**66**(1959), 276–279. MR**0103167**, https://doi.org/10.2307/2309633**[3]**J. W. Wrench, Jr., "Further evaluation of Khintchine's constant,"*Math. Comp.*, v. 14, 1960, pp. 370-371.**[4]**D. H. Lehmer,*Euclid’s Algorithm for Large Numbers*, Amer. Math. Monthly**45**(1938), no. 4, 227–233. MR**1524250**, https://doi.org/10.2307/2302607**[5]**D. E. Kntjth, "Euler's constant to 1271 places,"*Math. Comp.*, v. 16, 1962, pp. 275-281. MR 26 #5763.**[6]**Daniel Shanks, "A study of postulates: The 'thermodynamic' derivation of the adiabatic gas law,"*Amer. J. Phys.*, v. 24, 1956, pp. 352-354.**[7]**Daniel Shanks,*Solved and unsolved problems in number theory. Vol. I*, Spartan Books, Washington, D.C., 1962. MR**0160741**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-66-99920-0

Article copyright:
© Copyright 1966
American Mathematical Society