Zeros of sections of the zeta function. I
Author:
Robert Spira
Journal:
Math. Comp. 20 (1966), 542550
MSC:
Primary 65.25
MathSciNet review:
0203910
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
P.
Turán, Nachtrag zu meiner Abhandlung “On some
approximative Dirichlet polynomials in the theory of zetafunction of
Riemann”, Acta Math. Acad. Sci. Hungar. 10
(1959), 277–298 (unbound insert) (German, with Russian summary). MR 0115977
(22 #6774)
 [2]
P. Turán, "On some approximative Dirichlet polynomials in the theory of the zetafunction of Riemann," Danske Vid. Selsk. Mat.Fys Medd., v. 24, no. 17, 1948, pp. 336. MR 10, 286.
 [3]
Tom
M. Apostol, Sets of values taken by Dirichlet’s
𝐿series, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math.
Soc., Providence, R.I., 1965, pp. 133–137. MR 0176961
(31 #1229)
 [4]
R.
E. Langer, On the zeros of exponential sums and
integrals, Bull. Amer. Math. Soc.
37 (1931), no. 4,
213–239. MR
1562129, http://dx.doi.org/10.1090/S000299041931051338
 [5]
Charles
E. Wilder, Expansion problems of ordinary linear
differential equations with auxiliary conditions at more than two
points, Trans. Amer. Math. Soc.
18 (1917), no. 4,
415–442. MR
1501077, http://dx.doi.org/10.1090/S00029947191715010776
 [6]
Robert
Spira, Approximate functional approximations
and the Riemann hypothesis, Proc. Amer. Math.
Soc. 17 (1966),
314–317. MR 0199163
(33 #7312), http://dx.doi.org/10.1090/S00029939196601991635
 [7]
R. Spira, "Table of zeros of sections of the zeta function," UMT files.
 [8]
R. Spira, Check Values, Zeros and Fortran Programs for the Riemann Zeta Function and its First Three Derivatives, Report No. 1, University Computation Center, University of Tennessee, Knoxville, Tennessee.
 [9]
D.
H. Lehmer, Extended computation of the Riemann zetafunction,
Mathematika 3 (1956), 102–108. MR 0086083
(19,121b)
 [10]
Robert
Spira, Zeros of approximate functional
approximations, Math. Comp. 21 (1967), 41–48. MR 0234629
(38 #2945), http://dx.doi.org/10.1090/S0025571819670234629X
 [1]
 P. Turán, "Nachtrag zu meiner Abhandlung 'On some approximative Dirichlet polynomials in the theory of zetafunction of Riemann'," Acta Math. Acad. Sci. Hungar, v. 10, 1959, pp. 277298. MR 22 #6774; MR 22, 2546. MR 0115977 (22:6774)
 [2]
 P. Turán, "On some approximative Dirichlet polynomials in the theory of the zetafunction of Riemann," Danske Vid. Selsk. Mat.Fys Medd., v. 24, no. 17, 1948, pp. 336. MR 10, 286.
 [3]
 T. M. Apostol, "Sets of values taken by Dirichlet's series," Proc. Sympos. Pure Math., Vol. 8, pp. 133137, Amer. Math. Soc, Providence, R.I., 1965. MR 31 #1229. MR 0176961 (31:1229)
 [4]
 R. E. Langer, "On the zeros of exponential sums and integrals," Bull. Amer. Math. Soc., v. 37, 1931, pp. 213239. MR 1562129
 [5]
 C. E. Wilder, "Expansion problems of ordinary linear differential equations with auxiliary conditions at more than two points," Trans. Amer. Math. Soc., v. 18, 1917, pp. 415442. MR 1501077
 [6]
 R. Spira, "Approximate functional approximations and the Riemann hypothesis," Proc. Amer. Math. Soc., v. 17, 1966, pp. 314317. MR 0199163 (33:7312)
 [7]
 R. Spira, "Table of zeros of sections of the zeta function," UMT files.
 [8]
 R. Spira, Check Values, Zeros and Fortran Programs for the Riemann Zeta Function and its First Three Derivatives, Report No. 1, University Computation Center, University of Tennessee, Knoxville, Tennessee.
 [9]
 D. H. Lehmer, "Extended computation of the Riemann zetafunction," Mathematika, v. 3, 1956, pp. 102108. MR 19, 121, 1431. MR 0086083 (19:121b)
 [10]
 R. Spira, "Zeros of approximate functional approximations" Math. Comp. (To appear.) MR 0234629 (38:2945)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.25
Retrieve articles in all journals
with MSC:
65.25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196602039101
PII:
S 00255718(1966)02039101
Article copyright:
© Copyright 1966
American Mathematical Society
