TABLE ERRATA

The following corrections should be made in the table entitled Values of the Function $KZ(\beta, k)$, on pp. 336–343.

<table>
<thead>
<tr>
<th>$\sin^{-1} k$</th>
<th>β</th>
<th>for</th>
<th>read</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>44°</td>
<td>.027204</td>
<td>.027203</td>
</tr>
<tr>
<td>40°</td>
<td>57°</td>
<td>.196336</td>
<td>.196349</td>
</tr>
<tr>
<td>64°</td>
<td>64°</td>
<td>.171978</td>
<td>.171980</td>
</tr>
<tr>
<td>73°</td>
<td>63°</td>
<td>.124059</td>
<td>.124061</td>
</tr>
<tr>
<td>85°</td>
<td>87°</td>
<td>1.982530</td>
<td>1.982526</td>
</tr>
<tr>
<td>87°</td>
<td>22°</td>
<td>.548499</td>
<td>.558435</td>
</tr>
<tr>
<td>88°</td>
<td>44°</td>
<td>1.229612</td>
<td>1.229589</td>
</tr>
<tr>
<td>89°</td>
<td>79°</td>
<td>2.154030</td>
<td>2.153771</td>
</tr>
<tr>
<td>87°</td>
<td>73°</td>
<td>1.931185</td>
<td>1.930751</td>
</tr>
<tr>
<td>89°</td>
<td>8°</td>
<td>2.635400</td>
<td>2.635330</td>
</tr>
<tr>
<td>86°</td>
<td>71°</td>
<td>.616197</td>
<td>.616207</td>
</tr>
<tr>
<td></td>
<td>86°</td>
<td>3.351047</td>
<td>3.350992</td>
</tr>
<tr>
<td></td>
<td>86°</td>
<td>2.081462</td>
<td>2.081437</td>
</tr>
</tbody>
</table>

Henry E. Fettis
James C. Caslin

Applied Mathematics Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio

Editorial note: An additional serious error in this table was noted by D. Caligo (MTAC, v. 13, 1959, p. 141, MTE 269). For further notices of errata in this book, see Math. Comp., v. 18, 1964, p. 532, MTE 352, and p. 687, MTE 359.

In Table III (pp. 44–93), corresponding to $k^2 = 1.00$, the following additive corrections should be made, in units of the last decimal place.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>65.0°</th>
<th>70.0°</th>
<th>75.0°</th>
<th>80.0°</th>
<th>82.5°</th>
<th>85.0°</th>
<th>87.5°</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.9$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.8$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.7$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.6$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.5$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$-.4$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

639
These errors in the table of 10D values of the elliptic integral of the third kind are attributable to a programming error, which resulted in the value of k^2 being set equal to $1 - 10^{-16}$ instead of 1.

Henry E. Fettis

Applied Mathematics Research Laboratory
Wright-Patterson Air Force Base, Ohio

Editorial note: For a review of these tables see Math. Comp., v. 19, 1965, p. 509, R M T 81

On p. 333, formula 8.2.7 should read

$$P^{-r-1/2} \left[\frac{z}{(z^2 - 1)^{1/2}} \right] = \frac{(z^2 - 1)^{1/4}e^{-ip\pi}Q^{\mu}(z)}{(\frac{1}{2}\pi)^{1/2}\Gamma(\nu + \mu + 1)}$$

and the left side of formula 8.2.8 should read

$$Q^{-r-1/2} \left[\frac{z}{(z^2 - 1)^{1/2}} \right].$$

On p. 334, the left side of formula 8.6.11 should read $-Q_{\nu}^{-1/2}(z)$.

On p. 335, in formula 8.8.2 the factor $(z^2 - 1)^{-\nu/2}$ on the right side should be replaced by $(z^2 - 1)^{\mu/2}$.

Henry E. Fettis

Applied Mathematics Research Laboratory
Wright-Patterson Air Force Base, Ohio

On p. 783, in formula 22.9.8 the third column should read $(1 - \ln R^2)/2$, and in formula 22.9.11 the third column should read $R^{-1}(1 - xz + R)^{-1/2}$.

Van E. Wood

Battelle Memorial Institute
Columbus, Ohio
Recalculation of the coefficients in the Maclaurin series for $1/\Gamma(z)$ to more than 25D has revealed the following corrections to be required in the 16D table in 6.1.34 on p. 256. The final decimal digits in c_k corresponding to $k = 3, 8, 10, 12, 16,$ and 17 should each be increased by a unit; the final digits in c_{11} and c_{24} should each be decreased by a unit, while the value c_{25} should be decreased by two final units. Also, the sign of c_{26} should be changed to minus.

J. W. W.

Editorial note: An independent calculation of c_{25} shows that the value, 206, given in the NBS Handbook is correct—contrary to the assertion made in MTE 393. In fact $c_{25} = -0.032605356479 \cdots$.

On p. 187, the right side of equation (34) should read

$$T_{n+m}(x) + T_{n-m}(x).$$

Van E. Wood

In Volume I, p. 218, in transform 4.23(18), for $\frac{1}{2}\sigma, \frac{1}{2}\sigma + \frac{1}{2}, \text{ read } \sigma, \sigma + \frac{1}{2}$. Also, the second convergence condition on the right should read $\Re p > 2 | \Re \lambda |$ if $m = n - 1$.

In Volume II, pp. 128–129, in transform 10.2(9), the denominator parameters in the first $_1F_2$ should be $1 - \mu - (\rho + \nu)/2, 1 - \mu - (\rho - \nu)/2$, while the numerator parameter in the second $_1F_2$ should be $(\rho + \nu)/2$.

In Volume II, p. 153, in transform 10.3(88), for $-\lambda x^2$, read λx^2. Also change the convergence conditions on the right to read

$$\Re y > 0 \quad \text{if} \quad p < q - 1;$$

$$\Re y > 2 | \Re \lambda | \quad \text{if} \quad p = q - 1.$$

Van E. Wood

On p. 116, in transform 33.2.1(18), for $c/2, (c + 1)/2$, read $c, c + \frac{1}{2}$. Also, the last convergence condition should read $\Re s > 2 | \Re k |$ if $p = q - 1$.

On p. 112, transform 32.1(3) is a special case of the preceding, and the convergence conditions should accordingly be

$$\Re s > 2 | \Re c |, \quad q = p + 1;$$

$$\Re s > 0, \quad q > p + 1.$$

Van E. Wood

On p. 162, in section 2, \([f_i]\), it is erroneously stated that \(10^8 + 2271, 10^8 + 4291,\) and \(10^8 + 4909\) should be deleted from the list of primes given on pp. 97–98 of *Tavole di Numeri Primi entro Limiti Diversi e Tavole Affini*, by L. Poletti, Milan, 1920. In fact, these numbers are prime.

There exists an additional error in Poletti’s table; namely, \(10^8 + 9513\) is not prime, since it is divisible by 1531.

M. F. Jones
M. Lal

Memorial University of Newfoundland
St. John’s, Newfoundland
Canada

Editorial note: The primality of the first three numbers cited can be verified by consulting C. L. Baker & F. J. Gruenberger, *The First Six Million Prime Numbers*, The Micrcard Foundation, Madison, Wisconsin, 1959. (See Math. Comp., v. 15, 1961, p. 82, RMT 4.)

A table of the Riemann function \(P(x)\) is given on pp. xiii–xvi. The entries therein should each be decreased by a unit for the following 11 values of \(x\):

\[
\begin{array}{cccc}
750,000 & 1,000,000 & 2,400,000 & 3,450,000 \\
5,050,000 & 6,350,000 & 9,250,000 & 9,650,000 \\
9,750,000 & 9,850,000 & 9,950,000 &
\end{array}
\]

and the entry corresponding to \(x = 4,700,000\) should be increased by a unit.

In the same table the columns headed “Tchebycheff” do not constitute, as the author erroneously states (p. ix), a tabulation of

\[
\int_2^x dy/\ln y,
\]

but of

\[
Li(x) = \lim_{\epsilon \to 0} \int_0^{1-\epsilon} dy/\ln y + \int_{1-\epsilon}^x dy/\ln y.
\]

(The same error occurs in D. C. Mapes, “Fast method for computing the number of primes less than a given limit,” Math. Comp., v. 17, 1963, pp. 179–185.) These tabular values of \(Li(x)\) should be decreased by a unit for the following 11 values of \(x\):

\[
\begin{array}{cccc}
650,000 & 1,200,000 & 2,150,000 & 4,400,000 \\
4,550,000 & 5,350,000 & 5,550,000 & 8,200,000 \\
8,350,000 & 8,450,000 & 8,800,000 &
\end{array}
\]

and the entry for \(x = 9,950,000\) should be increased by a unit.

M. F. Jones
M. Lal