Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Numerical evaluation of Wiener integrals

Authors: Alan G. Konheim and Willard L. Miranker
Journal: Math. Comp. 21 (1967), 49-65
MSC: Primary 65.55
MathSciNet review: 0221753
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A systematic study of quadrature formulae for the Wiener integral $ \int {F[x]w(dx)} $ of the type $ \int {F[\theta (u, \cdot )]\nu (du)} $ is presented. The Cameron and Vladimirov quadrature formulae, which are the function space analogues of Simpson's Rule, are shown to fit into this framework. Numerical results are included.

References [Enhancements On Off] (What's this?)

  • [1] R. H. Cameron, "A 'Simpson's Rule' for the numerical evaluation of Wiener's integrals in function space," Duke Math. J., v. 18, 1951, pp. 111-130. MR 12, 718. MR 0040589 (12:718d)
  • [2] I. M. Gelfand, A. S. Frolov & N. N. Čencov, "The computation of continuous integrals by the Monte Carlo method," Izv. Vysš. Učebn. Zaved. Matematika, 1958, no. 5(6), pp. 32-45. (Russian) MR 24 #B1739. MR 0135694 (24:B1739)
  • [3] I. M. Gelfand & A. M. Yaglom, "Integration in functional spaces and its applications in quantum physics," J. Math. Phys., v. 1, 1960, pp. 48-69. MR 22 #3455. MR 0112604 (22:3455)
  • [4] R. E. A. C. Paley & N. Wiener, "Fourier transforms in the complex plane," Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., Providence, R. I., 1934.
  • [5] V. S. Vladimirov, "The approximate evaluation of Wiener integrals," Uspehi Mat. Nauk, v. 15, 1960, no. 4(94), pp. 129-135; English transi., Amer. Math. Soc. Transi. (2), v. 34, 1963, pp. 405-412. MR 23 #A1404. MR 0124087 (23:A1404)
  • [6] B. L. van der Waerden, Moderne Algebra, Vol. I, Springer, Berlin, 1937; English transl., Ungar, New York, 1949-1950. MR 10, 587.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society