Conversion of Modular Numbers to their Mixed Radix Representation by a Matrix Formula

By J. Schönheim

Introduction. Let \(m_i > 1, (i = 1, 2, \ldots, s) \), be integers relatively prime in pairs and denote \(m = m_1m_2 \cdots m_s \). If \(x_i, 0 \leq x_i < m_i, (i = 1, 2, \ldots, s) \) are integers, the ordered set \((x_1, x_2, \ldots, x_s) \) is called a modular number, with respect to the moduli \(m_i, (i = 1, 2, \ldots, s) \) and it denotes a unique residue class mod \(m \).

Modular arithmetic has been developed [1], [2], [5], and its use in computers has been suggested [1], [5]. It has also been applied in the solution of various problems [2], [6].

A central question is to determine the least nonnegative residue mod \(m \) of a given residue class \((x_1, x_2, \ldots, x_s) \). Denote it by \(n \). In order to work entirely in the given modular system it was suggested [1], [3], [7] and [8] to obtain \(n \) in its mixed radix representation with respect precisely to the radices \(m_i, (i = 1, 2, \ldots, s) \), thus in the form

\[
n = b_1 + b_2m_1 + b_3m_1m_2 + \cdots + b_sm_1m_2 \cdots m_{s-1}
\]

where \(0 \leq b_i < m_i, (i = 1, \ldots, s) \). In these methods the modular number \((b_1, b_2, \ldots, b_s) \) is obtained from the modular number \((x_1, x_2, \ldots, x_s) \) sequentially or iteratively.

We propose here (see Theorem) a matrix method which consists in precalculating \((s - 1) \) matrices, \(A_i, (i = 1, 2, \ldots, s - 1) \), which depend only on the moduli \(m_i, (i = 1, 2, \ldots, s) \) and in obtaining \((b_1, b_2, \ldots, b_s) \) by postmultiplication of \((x_1, x_2, \ldots, x_s) \) by \(A_1, A_2, \ldots, A_{s-1} \) or more precisely, observing the nonassociativity of the used matrix product, computing:

\[
(b_1, b_2, b_3, \ldots, b_s) = [(x_1, x_2, x_3, \ldots, x_s)A_1]A_2\cdots A_{s-2}A_{s-1}.
\]

This method is simpler than Mann's method [3] and concentrates the sequential Svoboda-Lindamood-Shapiro method [1], [4] in a single matricial formula.

Definition 1. Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be matrices of \(s \) columns with integer elements, whose rows may be regarded as modular numbers with respect to the moduli \(m_i, (i = 1, \ldots, s) \). Define, provided \(B \) has \(s \) rows, \(C = AB \) as \(C = [c_{ij}], c_{ij} = \sum a_{\alpha i}b_{\gamma j} \pmod{m_j}, 0 \leq c_{ij} < m_j \).

This matrix multiplication is not associative in general, but two exceptions are mentioned in the following lemma.

Lemma 1. Let \(E = E_{\nu \nu(c)} \) (fixed \(i, \nu = 1, 2, \ldots, h < s \)) be \(s \times s \) matrices having units in the main diagonal, \(c \), as \(\nu \)th element in the \(i \)th (\(\nu \neq i \)) row and zeroes elsewhere. Let \(D \) be a diagonal matrix of the same size. Then if \(X \) is an arbitrary matrix with \(s \) columns and \(A \) an arbitrary \(s \times s \) matrix, we have:

\[
(1) \quad (XA)D = X(AD),
\]

\[
(2) \quad (\cdots((XE_1)E_2)\cdots)E_h = X((\cdots((E_1E_2)E_3)\cdots)E_h).
\]

Proof. Properties (1) and (2) are immediate consequences of the definitions.

Received May 18, 1966.
Remark 1. The matrices $E_\nu (\nu = 1, \cdots, h)$ are generalized elementary matrices.

Notation. Denote $x = (x_1, x_2, \cdots, x_s)$ if x is an arbitrary number of the residue class $(x_1, x_2, \cdots, x_s) \mod m$ and denote $n = (x_1, x_2, \cdots, x_s)$ if n is the least non-negative residue of the class.

Lemma 2. If (x_1, x_2, \cdots, x_s) is a modular number with respect to the moduli $m_i (i = 1, \cdots, s)$ and $n = (x_1, x_2, \cdots, x_s)$ while

$$\begin{pmatrix}
\frac{x_2 - x_1}{m_1}, & \frac{x_3 - x_1}{m_1}, & \cdots, & \frac{x_s - x_1}{m_1}
\end{pmatrix}$$

means a modular number with respect to the moduli $m_i (i = 2, 3, \cdots, s)$ then

$$n - x_1 \mathbin{\equiv} \begin{pmatrix}
\frac{x_2 - x_1}{m_1}, & \frac{x_3 - x_1}{m_1}, & \cdots, & \frac{x_s - x_1}{m_1}
\end{pmatrix}.$$

Proof. $n - x_1$ is divisible by m_1 and since $0 \leq n < m_1$, it follows that

$$0 \leq \frac{n - x_1}{m_1} < \frac{m}{m_1}.$$

Definition 2. Let $m_i^{-1} \equiv m_{ij} \pmod{m_j}$, $i < j \leq s$, $0 < m_{ij} < m_j$ and put $n_{ij} = m_j - m_{ij}$. Let I_k be the identity matrix of rank k. Define, for $1 \leq k \leq s - 1, s \times s$ matrices, $A_k = \begin{bmatrix}
I_{k-1} & 0 \\
\vdots & \ddots & \ddots & \ddots \\
1 & n_{k,k+1} & n_{k,k+2} & \cdots & n_{k,s} \\
0 & m_{k,k+1} & 0 & \cdots & 0 \\
0 & 0 & m_{k,k+2} & \cdots & 0 \\
0 & 0 & 0 & \cdots & m_{k,s}
\end{bmatrix}.$

Lemma 3. If (y_1, y_2, \cdots, y_s) is a modular number with respect to the moduli $m_i (i = 1, \cdots, s)$, then

$$(y_1, y_2, \cdots, y_s) A_k = \begin{pmatrix}
y_1, y_2, \cdots, y_k, \frac{y_{k+1} - y_k}{m_k}, \cdots, \frac{y_s - y_k}{m_k}
\end{pmatrix}.$$

Proof. The matrix A_k is the product of the elementary matrices $E_{k,k+1}(n_{k,k+1}) \cdots E_{ks}(n_{ks})$ multiplied by the diagonal matrix

$$D = \begin{bmatrix}
I_k \\
m_{k,k+1} \\
\vdots \\
m_{k,s}
\end{bmatrix}.$$

By Lemma 1 associativity holds and the effect of postmultiplication by A_k is the
same as the effect of successive postmultiplications by $E_{k,k+1}, E_{k,k+2}, \cdots, E_{k,s}$ and D, which is precisely the right side of (3).

Lemma 4. Let $n \equiv (x_1, x_2, \cdots, x_s)$ and let $q_i, r_i (i = 1, \cdots, s)$ be the quotients and the remainders in the successive divisions

\begin{equation}
\begin{align*}
n &= m_1 q_1 + r_1, \\
q_i &= m_{i+1} q_{i+1} + r_{i+1} \quad (i = 1, \cdots, s - 1)
\end{align*}
\end{equation}

then

\begin{equation}
\begin{align*}
(\cdots ((x_1, x_2, \cdots, x_s) A_1) A_2) \cdots) A_k &= (r_1, r_2, \cdots, r_k, r_{k+1}, y_{k+2}, y_{k+3}, \cdots, y_s) \\
\text{and}
(q_{k+1}, y_{k+2}, \cdots, y_s) &\equiv q_k.
\end{align*}
\end{equation}

Proof. Proceed by induction on k. Let $k = 1$. Then by Lemma 3

\begin{equation}
(x_1, \cdots, x_s) A_1 = \left(\frac{x_2 - x_1}{m_1}, \cdots, \frac{x_s - x_1}{m_2}\right),
\end{equation}

hence $r_1 = x_1$ and by Lemma 2,

\begin{equation}
\left(\frac{x_2 - x_1}{m_1}, \cdots, \frac{x_s - x_1}{n_1}\right) \equiv \frac{n - x_1}{m_1} = q_1.
\end{equation}

Therefore

\begin{equation}
\frac{x_2 - x_1}{m_1} \equiv r_2 \pmod{m_2} \quad 0 \leq r_2 < m_2.
\end{equation}

Suppose the assertion is true for $1 < k < h \leq s - 1$, thus

\begin{equation}
(\cdots ((x_1, x_2, \cdots, x_s) A_1) \cdots) A_{k-1} = (r_1, r_2, \cdots, r_k, y_{h+1}, y_{h+2}, \cdots, y_s),
\end{equation}

and

\begin{equation}
q_{k-1} \equiv (r_h, y_{h+1}, \cdots, y_s)
\end{equation}

with respect to the moduli $m_i (i = h, h + 1, \cdots, s)$. Then by Lemma 3 and (5)

\begin{equation}
((\cdots ((x_1, x_2, \cdots, x_s) A_1) \cdots) A_{k-1}) A_k = (r_1, r_2, \cdots, r_h, \frac{y_{h+1} - r_h}{m_h}, \cdots, \frac{y_s - r_h}{m_h})
\end{equation}

and by (6) and Lemma 2

\begin{equation}
\left(\frac{y_{h+1} - r_h}{m_h}, \cdots, \frac{y_s - r_h}{m_h}\right) \equiv \frac{q_{k-1} - r_h}{m_h} = q_h.
\end{equation}

Therefore

\begin{equation}
\frac{y_{h+1} - r_h}{m_h} = r_{h+1}, \quad 0 \leq r_{h+1} < m_{h+1}.
\end{equation}

Hence the result is true for $k = h$.

Theorem. If $m_i, m_i > 1 \ (i = 1, 2, \cdots, s)$ are integers, relatively prime in pairs
\(m = m_1 \cdots m_s \), and if \(n \) is the least nonnegative residue of the class
\((x_1, x_2, \cdots, x_s) \mod m\) and \(b_1, b_2, \cdots, b_s \) are the digits of the mixed radix representation of \(n \) with respect to the radices \(m_i \) \((i = 1, \cdots, s)\) then with matrix multiplication and matrices \(A_i \) \((i = 1, \cdots, s)\) as defined in Definitions 1 and 2

\[
(b_1, b_2, \cdots, b_s) = (\cdots (((x_1, x_2, \cdots, x_s) A_1) A_2) \cdots) A_{s-1}.
\]

\textit{Proof.} The digits \(b_1, \cdots, b_s \) of the required representation are the remainders of the successive divisions (4) and the theorem is a corollary of Lemma 4 with \(k = s - 1 \).

\textit{Remark 2.} The above algorithm requires in general \(s - 1 \) matrix multiplications, but if \(k < s - 1 \) and

\[
(7) \quad (\cdots(((x_1, x_2, \cdots, x_s) A_1) A_2) \cdots) A_k = (r_1, r_2, \cdots, r_{k+1}, 0, 0, \cdots, 0)
\]

then the right side of (7) is the result, and no further multiplications are needed.

\textit{Example.} Let 2, 3, 5, 7 be the moduli \(m_1, m_2, m_3, m_4 \). Then the numbers \(m_{ij} \), \(i < j \) are given by

\[
\begin{array}{c}
2 \\
3 \\
4
\end{array}
\begin{array}{c}
3 \\
5
\end{array}
\begin{array}{c}
4
\end{array}
\]

and therefore the numbers \(n_{ij} \) are

\[
\begin{array}{cccc}
1 & 2 & 3 \\
3 & 2 & 4
\end{array}
\]

The matrices \(A_1, A_2, A_3 \) are

\[
A_1 = \begin{bmatrix}
1 & 1 & 2 & 3 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{bmatrix} ; \quad A_2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 3 & 2 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 5
\end{bmatrix} ; \quad A_3 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 3
\end{bmatrix} .
\]

Let \((0 2 0 0)\) be a residue class mod 210. Let \(n \) be the least nonnegative residue of this class. Then \(b_1, b_2, b_3, b_4 \), the digits of the mixed radix representation of \(n \), with respect to the radices 2, 3, 5, 7 are given by

\[
(b_1, b_2, b_3, b_4) = (((0 2 0 0) A_1) A_2) A_3 = (0 1 3 4).
\]

Indeed \(0 + 1 \cdot 2 + 3 \cdot 2 \cdot 3 + 4 \cdot 2 \cdot 3 \cdot 5 = 140, 140 < 210 \) and \(140 \equiv 0 \pmod{2}, 2 \pmod{3}, 0 \pmod{5} \) and \(0 \pmod{7} \).

Department of Applied Mathematics
Tel-Aviv University
Ramat-Aviv, Tel-Aviv
Israel

