Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **21** (1967), 258-292

DOI:
https://doi.org/10.1090/S0025-5718-67-99891-2

Addendum:
Math. Comp. **22** (1968), 249.

Full-text PDF

References | Additional Information

**[1]**A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie,*An index of mathematical tables. Vol. I: Introduction. Part I: Index according to functions*, Second edition, Published for Scientific Computing Service Ltd., London, by Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR**0142796****[2]**L. Potin,*Formules et Tables Numériques*, Gauthier-Villars, Paris, 1925.**[3]**K. Hayashi,*Fünfstellige Funktionentafeln*, Springer, Berlin, 1930.**[1]**Kōki Takahashi & Masaaki Sibuya, ``Statistics of the digits of ,''*Jōhō Shori (Information Processing)*, v. 6, 1965, pp. 221-223. (Japanese) (See also the next review here.)**[1]**Kōki Takahashi & Masaaki Sibuya, ``Statistics of the digits of ,''*Jōhō Shori (Information Processing)*, v. 6, 1965, pp. 221-223. (Japanese)**[2]**H. S. Uhler, ``Many-figure approximations to , and distribution of digits in and ,''*Proc. Nat. Acad. Sci. U. S. A.*, v. 37, 1951, pp. 63-67.**[3]**H. S. Uhler, ``Approximations exceeding 1300 decimals for , , and distribution of digits in them,''*ibid.*, pp. 443-447.**[4]**M. Lal,*Expansion of to 19600 Decimals*, ms. deposited in the UMT file. (See*Math. Comp.*, v. 21, 1967, pp. 258-259, RMT 17.)**[1]**A. J. C. Cunningham,*Quadratic Partitions*, Hodgson, London, 1904.**[2]**H. Davenport,*The higher arithmetic: An introduction to the theory of numbers*, Harper Torchbooks/The Science Library, Harper & Brothers, New York, 1960. MR**0109802****[3]**S. Chowla,*The Riemann hypothesis and Hilbert’s tenth problem*, Mathematics and Its Applications, Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR**0177943****[4]**Daniel Shanks,*Solved and unsolved problems in number theory. Vol. I*, Spartan Books, Washington, D.C., 1962. MR**0160741****[5]**Daniel Shanks,*A sieve method for factoring numbers of the form 𝑛²+1*, Math. Tables Aids Comput.**13**(1959), 78–86. MR**0105784**, https://doi.org/10.1090/S0025-5718-1959-0105784-2**[1]**M. F. Jones, M. Lal, and W. J. Blundon,*Statistics on certain large primes*, Math. Comp.**21**(1967), 103–107. MR**0220655**, https://doi.org/10.1090/S0025-5718-1967-0220655-3**[2]**M. Kraitchik, ``Les grand nombres premiers,''*Sphinx*, v. 8, 1938, pp. 82-86.**[3]**N. G. W. H. Beeger,*Tafel van den kleinsten factor de getallen van*999 999 000-1 000 119 120,*etc.*, deposited in the UMT file and reviewed in UMT 68,*Math. Comp.*, v. 20, 1966, p. 456.**[1]**L. D. Baumert and H. Fredricksen,*The cyclotomic numbers of order eighteen with applications to difference sets*, Math. Comp.**21**(1967), 204–219. MR**0223322**, https://doi.org/10.1090/S0025-5718-1967-0223322-5**[1]**T. Yamanouchi,*Proc. Phys.-Math. Soc. Japan*, v. 18, 1936, p. 623.**[2]**T. Inui & S. Yanagawa,*Representation of Groups and Quantum Mechanics of Atoms and Molecules*, 2nd ed., Shohkabo, Tokyo, 1955.**[3]**Morton Hamermesh,*Group theory and its application to physical problems*, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962. MR**0136667****[4]**S. Katsura, ``Tables of representations of permutation groups for molecular integrals,''*J. Chem. Phys.*, v. 38, 1963, p. 3033.**[1]***Tables of Jacobi Elliptic Functions*, ms. prepared by the Project for Computation of Mathematical Tables, New York City; printed for limited distribution, Washington, D. C., 1942. (See*MTAC*, v. 1, 1943-1945, pp. 125-126, UMT**12;***ibid.*, p. 425, RMT**207**.)**[2]**L. M. Milne-Thomson,*Jacobian elliptic function tables*, Dover Publications, Inc., New York, N. Y., 1950. MR**0088071****[3]**G. W. Spenceley & R. M. Spenceley,*Smithsonian Elliptic Functions Tables (Smithsonian Miscellaneous Collections*, v. 109), Smithsonian Institution, Washington, D. C., 1947. (See*MTAC*, v. 3, 1948-1949, pp. 89-92, RMT**485**.)**[1]**J. C. P. Miller,*Note on the general solution of the confluent hypergeometric equation*, Math. Tables Aids Comput.**11**(1957), 97–99. MR**0086393**, https://doi.org/10.1090/S0025-5718-1957-0086393-9**[2]**A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi,*Higher Transcendental Functions*, Vol. 1, McGraw-Hill, New York, 1953.**[3]**L. J. Slater,*Confluent hypergeometric functions*, Cambridge University Press, New York, 1960. MR**0107026****[1]**A. R. DiDonato and M. P. Jarnagin,*A method for computing the circular coverage function*, Math. Comp.**16**(1962), 347–355. MR**0148161**, https://doi.org/10.1090/S0025-5718-1962-0148161-0**[2]**H. Leon Harter,*Circular error probabilities*, J. Amer. Statist. Assoc.**55**(1960), 723–731. MR**0144403****[1]**Henry E. Fettis and James C. Caslin,*Ten place tables of the Jacobian elliptic functions. Part I*, Report No. ARL 65-180, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1965. MR**0201684****[1]**Henry E. Fettis & James C. Caslin,*Elliptic Integral of the First Kind and Elliptic Integral of the Second Kind*, ms. tables deposited in the UMT file. (See*Math. Comp.*, v. 20, 1966, pp. 626, RMT**99**.)**[2]**Henry E. Fettis and James C. Caslin,*Ten place tables of the Jacobian elliptic functions. Part I*, Report No. ARL 65-180, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1965. MR**0201684****[3]***Math. Comp.*, v. 20, 1966, p. 639, MTE**398**.**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**P. Concus, D. Cassatt, G. Jaehnig, and E. Melby,*Tables for the evaluation of ∫₀^{∞}𝑥^{𝛽}𝑒^{-𝑥}𝑓(𝑥)𝑑𝑥 by Gauss-Laguerre quadrature*, Math. Comp.**17**(1963), 245–256. MR**0158534**, https://doi.org/10.1090/S0025-5718-1963-0158534-9**[3]**P. Concus, ``Additional tables for the evaluation of by Gauss-Laguerre quadrature,''*Math. Comp.*, v. 18, 1964, p. 523.**[4]**T. S. Shao, T. C. Chen, and R. M. Frank,*Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials*, Math. Comp.**18**(1964), 598–616. MR**0166397**, https://doi.org/10.1090/S0025-5718-1964-0166397-1**[5]**A. H. Stroud and Don Secrest,*Gaussian quadrature formulas*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0202312****[1]**L. N. Osipova & S. A. Tumarkin,*Tables for the Calculation of Toroidal Shells*, Akad. Nauk SSSR, Moscow, 1963. (See*Math. Comp.*, v. 18, 1964, pp. 677-678.)**[2]**S. A. Tumarkin,*Asymptotic solution of a linear non-homogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades*, J. Appl. Math. Mech.**23**(1959), 1549–1565. MR**0114975**, https://doi.org/10.1016/0021-8928(59)90011-5**[3]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[4]**Yudell L. Luke,*Integrals of Bessel functions*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR**0141801****[5]**R. S. Scorer,*Numerical evaluation of integrals of the form 𝐼=∫^{𝑥₂}_{𝑥₁}𝑓(𝑥)𝑒^{𝑖𝜙(𝑥)}𝑑𝑥 and the tabulation of the function 𝐺𝑖(𝑧)=(1/𝜋)∫^{∞}₀𝑠𝑖𝑛(𝑢𝑧+\frac13𝑢³)𝑑𝑢*, Quart. J. Mech. Appl. Math.**3**(1950), 107–112. MR**0037604**, https://doi.org/10.1093/qjmam/3.1.107**[6]**M. Rothman,*The problem of an infinite plate under an inclined loading, with tables of the integrals of 𝐴𝑖(±𝑥) and 𝐵𝑖(±𝑥)*, Quart. J. Mech. Appl. Math.**7**(1954), 1–7. MR**0060682**, https://doi.org/10.1093/qjmam/7.1.1**[7]**M. Rothman,*The problem of an infinite plate under an inclined loading, with tables of the integrals of 𝐴𝑖(±𝑥) and 𝐵𝑖(±𝑥)*, Quart. J. Mech. Appl. Math.**7**(1954), 1–7. MR**0060682**, https://doi.org/10.1093/qjmam/7.1.1**[8]**Harvard University Computation Laboratory, Annals, Vol. 2,*Tables of the Modified Hankel Functions of Order One-Third and Their Derivatives*, Harvard Univ. Press, Cambridge, Mass., 1945. (See*MTAC*, v. 2, 1946, pp. 176-177.)**[9]**K. Singh, J. F. Lumley & R. Betchov,*Modified Hankel Functions and their Integrals to Argument*10, Engineering Research Bulletin B-87, The Pennsylvania State University, University Park, Penn., 1963. (See*Math. Comp.*, v. 18, 1964, p. 522.)

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-67-99891-2

Article copyright:
© Copyright 1967
American Mathematical Society