Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 21 (1967), 258-292
DOI: https://doi.org/10.1090/S0025-5718-67-99891-2
Addendum: Math. Comp. 22 (1968), 249.
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, Vol. I, 2nd ed., Addison-Wesley, Reading, Mass., 1962, p. 53. MR 0142796 (26:365a)
  • [2] L. Potin, Formules et Tables Numériques, Gauthier-Villars, Paris, 1925.
  • [3] K. Hayashi, Fünfstellige Funktionentafeln, Springer, Berlin, 1930.
  • [1] Kōki Takahashi & Masaaki Sibuya, ``Statistics of the digits of $ \surd n$,'' Jōhō Shori (Information Processing), v. 6, 1965, pp. 221-223. (Japanese) (See also the next review here.)
  • [1] Kōki Takahashi & Masaaki Sibuya, ``Statistics of the digits of $ \surd n$,'' Jōhō Shori (Information Processing), v. 6, 1965, pp. 221-223. (Japanese)
  • [2] H. S. Uhler, ``Many-figure approximations to $ \surd 2$, and distribution of digits in $ \surd 2$ and $ 1/\surd 2$,'' Proc. Nat. Acad. Sci. U. S. A., v. 37, 1951, pp. 63-67.
  • [3] H. S. Uhler, ``Approximations exceeding 1300 decimals for $ \surd 3$, $ 1/\surd 3$, $ \sin (\pi /3)$ and distribution of digits in them,'' ibid., pp. 443-447.
  • [4] M. Lal, Expansion of $ \surd 2$ to 19600 Decimals, ms. deposited in the UMT file. (See Math. Comp., v. 21, 1967, pp. 258-259, RMT 17.)
  • [1] A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904.
  • [2] H. Davenport, The Higher Arithmetic, Harper, New York, 1960, pp. 120-123. MR 0109802 (22:687)
  • [3] S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem, Gordon and Breach, New York, 1965, Chapters IV, V. MR 0177943 (31:2201)
  • [4] D. Shanks, Solved and Unsolved Problems in Number Theory, Spartan, Washington, 1962. MR 0160741 (28:3952)
  • [5] D. Shanks, ``A sieve method for factoring numbers of the form $ {n^2} + 1$,'' MTAC, v. 13, 1959, pp. 78-86. MR 0105784 (21:4520)
  • [1] M. F. Jones, M. Lal & W. J. Blundon, ``Statistics on certain large primes,'' Math. Comp., v. 21, 1967, pp. 103-107. MR 0220655 (36:3707)
  • [2] M. Kraitchik, ``Les grand nombres premiers,'' Sphinx, v. 8, 1938, pp. 82-86.
  • [3] N. G. W. H. Beeger, Tafel van den kleinsten factor de getallen van 999 999 000-1 000 119 120, etc., deposited in the UMT file and reviewed in UMT 68, Math. Comp., v. 20, 1966, p. 456.
  • [1] L. D. Baumert & H. Fredricksen, ``Cyclotomic numbers of order eighteen with applications to difference sets,'' Math. Comp., v. 21, 1967, pp. 204-219. MR 0223322 (36:6370)
  • [1] T. Yamanouchi, Proc. Phys.-Math. Soc. Japan, v. 18, 1936, p. 623.
  • [2] T. Inui & S. Yanagawa, Representation of Groups and Quantum Mechanics of Atoms and Molecules, 2nd ed., Shohkabo, Tokyo, 1955.
  • [3] M. Hamermesh, Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, Mass., 1962. MR 0136667 (25:132)
  • [4] S. Katsura, ``Tables of representations of permutation groups for molecular integrals,'' J. Chem. Phys., v. 38, 1963, p. 3033.
  • [1] Tables of Jacobi Elliptic Functions, ms. prepared by the Project for Computation of Mathematical Tables, New York City; printed for limited distribution, Washington, D. C., 1942. (See MTAC, v. 1, 1943-1945, pp. 125-126, UMT 12; ibid., p. 425, RMT 207.)
  • [2] L. M. Milne-Thomson, Jacobian Elliptic Function Tables, Dover, New York, 1950. (See MTAC, v. 5, 1951, pp. 157-158, RMT 910.) MR 0088071 (19:464d)
  • [3] G. W. Spenceley & R. M. Spenceley, Smithsonian Elliptic Functions Tables (Smithsonian Miscellaneous Collections, v. 109), Smithsonian Institution, Washington, D. C., 1947. (See MTAC, v. 3, 1948-1949, pp. 89-92, RMT 485.)
  • [1] J. C. P. Miller, ``Note on the general solution of the confluent hypergeometric equation,'' MTAC., v. 11, 1957, pp. 97-99. MR 0086393 (19:178b)
  • [2] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.
  • [3] Lucy J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, 1960. MR 0107026 (21:5753)
  • [1] A. R. Di Donato & M. P. Jarnagin, ``A method for computing the circular coverage function,'' Math. Comp., v. 16, 1963, pp. 347-355. MR 0148161 (26:5669)
  • [2] H. L. Harter, ``Circular error probabilities,'' J. Amer. Statist. Assoc., v. 55, 1960, pp. 723-731. MR 0144403 (26:1948)
  • [1] Henry E. Fettis & James C. Caslin, Ten Place Tables of the Jacobi Elliptic Functions, Report ARL 65-180 Part 1, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, September 1965. MR 0201684 (34:1566)
  • [1] Henry E. Fettis & James C. Caslin, Elliptic Integral of the First Kind and Elliptic Integral of the Second Kind, ms. tables deposited in the UMT file. (See Math. Comp., v. 20, 1966, pp. 626, RMT 99.)
  • [2] Henry E. Fettis & James C. Caslin, Tables of Elliptic Integrals of the First, Second and Third Kind, Applied Mathematics Research Laboratory Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, 1964. (See Math. Comp., v. 19, 1965, p. 509, RMT 81.) MR 0201684 (34:1566)
  • [3] Math. Comp., v. 20, 1966, p. 639, MTE 398.
  • [1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Applied Mathematics Series No. 55, U. S. Government Printing Office, 1964. (See Math. Comp., v. 19, 1965, pp. 147-149.) MR 0167642 (29:4914)
  • [2] P. Concus, D. Cossat, G. Jaehnig & E. Melby, ``Tables for the evaluation of $ \int_0^\infty {{x^\beta }} {e^{ - x}}f(x)dx$ by Gauss-Laguerre quadrature, Math. Comp., v. 17, 1963, pp. 245-256. MR 0158534 (28:1757)
  • [3] P. Concus, ``Additional tables for the evaluation of $ \int_0^\infty {{x^\beta }} {e^{ - x}}f(x)dx$ by Gauss-Laguerre quadrature,'' Math. Comp., v. 18, 1964, p. 523.
  • [4] T. S. Shao, T. C. Chen & R. M. Frank, ``Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials,'' Math. Comp., v. 18, 1964, pp. 598-616. MR 0166397 (29:3674)
  • [5] A. H. Stroud & D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N. J., 1966. (See Math. Comp, v. 21, 1967, pp. 125-126, RMT 14.) MR 0202312 (34:2185)
  • [1] L. N. Osipova & S. A. Tumarkin, Tables for the Calculation of Toroidal Shells, Akad. Nauk SSSR, Moscow, 1963. (See Math. Comp., v. 18, 1964, pp. 677-678.)
  • [2] S. A. Tumarkin, ``Asymptotic solution of a linear nonhomogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades,'' Prikl. Mat. Meh., v. 23, 1959, pp. 1083-1094; English transi., J. Appl Math. Mech., v. 23, 1959, pp. 1549-1565. MR 0114975 (22:5784)
  • [3] Milton Abramowitz & Irene A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1964. (See Math. Comp., v. 19, 1965, pp. 147- 149.) MR 0167642 (29:4914)
  • [4] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. (See Math. Comp., v. 17, 1963, p. 318-320.) MR 0141801 (25:5198)
  • [5] R. S. Scorer, ``Numerical evaluation of integrals in the form $ I = \int {_{{x_1}}^{{x_2}}} f(x){e^{i\varphi (x)}}dx$ and the tabulation of the function $ {G_i}(z) = 1/\pi \int_0^\infty {\sin } (uz + {u^3}/3)du$", Quart. J. Mech. Appl Math., v. 3, 1950, pp. 107-112. (See MTAC, v. 4, 1950, p. 215.) MR 0037604 (12:287c)
  • [6] M. Rothman, ``The problem of an infinite plate under an inclined loading with tables of the integrals of $ {A_i}( \pm x)$ and $ {B_i}( \pm x)$,'' Quart. J. Mech. Appl. Math., v. 7, 1954, pp. 1-7. (See MTAC, v. 8, 1954, p. 162.) MR 0060682 (15:708d)
  • [7] M. Rothman, ``Tables of the integrals and differential coefficients of $ {G_i}(x)$ and $ {H_i}( - x)$,'' Quart. J. Mech. Appl. Math., v. 7, 1954, p. 379-384. (See MTAC, v. 9, 1955, pp. 77-78. On the latter pages are descriptions of further tables related to Airy functions and their integrals. See also [3].) MR 0060682 (15:708d)
  • [8] Harvard University Computation Laboratory, Annals, Vol. 2, Tables of the Modified Hankel Functions of Order One-Third and Their Derivatives, Harvard Univ. Press, Cambridge, Mass., 1945. (See MTAC, v. 2, 1946, pp. 176-177.)
  • [9] K. Singh, J. F. Lumley & R. Betchov, Modified Hankel Functions and their Integrals to Argument 10, Engineering Research Bulletin B-87, The Pennsylvania State University, University Park, Penn., 1963. (See Math. Comp., v. 18, 1964, p. 522.)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-67-99891-2
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society