Rational Approximations to the Incomplete Elliptic Integrals of the First and Second Kinds*

By Wyman G. Fair and Yudell L. Luke

In this note we derive rational approximations (in Eqs. (20) and (21) below) to the integrals

\[F(\varphi, k) = \int_{0}^{\varphi} (1 - k^2 \sin^2 t)^{-1/2} dt, \]

and

\[E(\varphi, k) = \int_{0}^{\varphi} (1 - k^2 \sin^2 t)^{1/2} dt, \]

where \(k^2 \) is real and \(0 < \varphi < \pi/2 \), by obtaining the main diagonal Padé approximations to closely related functions. It is sufficient to consider the case \(0 < k^2 < 1 \), for if \(k^2 > 1 \),

\[F(\varphi, k) = k_1 F(\beta_1, k_1) \quad \text{and} \quad E(\varphi, k) = k_1[E(\beta_1, k_1) + (1 - k^2)^2 F(\beta_1, k_1)], \]

\(k_1 = 1/k \) and \(\beta_1 = \arcsin(k \sin \varphi) \),

while if \(k^2 < 0 \),

\[F(\varphi, k) = (1 - k^2)^{1/2} F(\beta_2, k_2) \quad \text{and} \quad E(\varphi, k) = (1 - k^2)^{-1/2} E(\beta_2, k_2) - \frac{k_2^2 \sin \beta_2 \cos \beta_2}{(1 - k^2 \sin^2 \beta_2)^{1/2}}, \]

\(k_2 = |k|(1 - k^2)^{-1/2} \) and \(\beta_2 = \arcsin\left(\frac{1 - k^2}{1 - k^2 \sin^2 \varphi}\right)^{1/2} \sin \varphi \).

Define \(m = k^2 \) and

\[a = \left[\frac{(2 - m)^2}{1 + m}\right]^{1/3} > 0, \quad b = \left[\frac{(1 - 2m)^3}{(m - 2)(m + 1)}\right]^{1/3}, \]

\[c = \left[\frac{(1 + m)^2}{m - 2}\right]^{1/3} < 0, \quad x = c + \frac{a - c}{\sin^2 \varphi}, \]

\[h = a\left[c + \frac{b(2m - 1)}{m - 2}\right] < 0, \quad g = 2m - 1, \quad s = 2\left[\frac{2 - m}{3a}\right]^{1/2}, \]

\[r(x) = x^3 + hx + g, \quad v(x) = \frac{(x - c)^3(x - a)}{x - b}, \]

\[I_1(x) = \int_{x}^{a} [r(t)]^{-1/2} dt \quad \text{and} \quad I_2(x) = \int_{x}^{a} [v(t)]^{-1/2} dt. \]

Received February 3, 1967.

* This work was supported by the National Aeronautics and Space Administration under Contract No. NASA Hq. 80X0108(64).
Then \(a > b > c \) are the real roots of \(r(z) = 0 \) and it follows from [1] that

\[
F(\varphi, k) = s^{-1}I_1(x) \quad \text{and} \quad E(\varphi, k) = s^{-1}I_2(x).
\]

Set

\[
G_1(x) = [r(x)]^{1/2}I_1(x), \quad G_2(x) = \frac{[v(x)]^{1/2}}{2x} I_2(x).
\]

Then \(G_l(x) \ (l = 1, 2) \) satisfies the differential equation

\[
r(x)\gamma_l(x)G'_l(x) - \delta_l(x)G_l(x) + r(x) = 0,
\]

where

\[
\gamma_1(x) = 1, \quad \gamma_2(x) = 2x, \quad \delta_1(x) = \frac{1}{3}(3x^2 + h), \\
\delta_2(x) = x^3 - 2(a + 2b)x^2 + (ab - bc - 3ac)x + 2abc.
\]

For convenience, we make the transformations

\[
z = 1/x, \quad G_1(z) = x^{-1}\left[2 + x^2H_1(x)\right], \quad G_2(z) = H_2(z).
\]

Then (8) becomes

\[
\eta_l(x)H'_l(x) + \rho_l(x)H_l(x) + \xi_l(x) = 0, \quad l = 1, 2,
\]

where

\[
\eta_1(x) = x(1 + hx^2 + gx^3), \quad \eta_2(x) = 2\eta_1(x), \quad \rho_1(x) = \frac{5}{2} + \frac{3h}{2} x^2 + gx^3, \\
\rho_2(x) = 1 - 2(a + 2b)x + (ab - bc - 3ac)x^2 - 2gx^3, \quad \xi_1(x) = -2h - 3gx, \\
\xi_2(x) = -1 - hx^2 - gx^3, \quad H_1(0) = \frac{4h}{5} \quad \text{and} \quad H_2(0) = 1.
\]

Main diagonal Padé approximations for the solution to (10) are readily computed by using the results of [2]. For completeness we list the recurrence relations which determine the main diagonal Padé approximations to \(H_l(x), \ l = 1, 2 \). In the notation of [2], we have: for \(l = 1 \);

\[
y(x) = H_1(x), \\
y_0 = y(0) = 4h/5,
\]

\[
p_0 = p_2 = 0, \quad p_1 = 1, \quad p_2 = h, \quad p_4 = g, \\
q_0 = 5/2, \quad q_1 = 0, \quad q_2 = 3h/2, \quad q_3 = g, \\
s_0 = -2h, \quad s_1 = -3g, \quad s_2 = s_3 = 0,
\]

and for \(l = 2, y(x) = H_2(x), \)

\[
y_0 = y(0) = 1, \\
p_0 = p_2 = 0, \quad p_1 = 2, \quad p_2 = 2h, \quad p_4 = 2g, \\
q_0 = 1, \quad q_1 = -2(a + 2b), \quad q_2 = ab - bc - 3ac, \quad q_3 = -2g, \\
s_0 = -1, \quad s_1 = 0, \quad s_2 = -h, \quad s_3 = -g.
\]

Let
(13) \[y_n = \frac{A_n}{B_n}, \quad A_n = \sum_{k=0}^{n} a_{n,k} x^k, \quad B_n = \sum_{k=0}^{n} b_{n,k} x^k \]

be the \(n \)th-order main diagonal Padé approximations to \(y(x) \). Then \(A_n \) and \(B_n \) satisfy

(14) \[A_n = (1 + \beta_n x) A_{n-1} + \alpha_n x^2 A_{n-2} \]

The equations which determine \(\alpha_n \) and \(\beta_n \) are

(15) \[\alpha_n = -\tau_{n-1,1} \left[(-1)^n \alpha_{n-1,1} p_1 + \alpha_{n-1,2} u_1 + 2 \sum_{j=3}^{n} \alpha_{n-1,j} \tau_{j-2,1} \right]^{-1}, \]

and

\[\beta_n = -\tau_{n-1,2} + \alpha_{n,2} u_2 + 2 \sum_{j=3}^{n} \alpha_{n,j} \left(\tau_{j-2,2} + \beta_{j-1} \tau_{j-2,1} \right) \]

\[\times \left[2\tau_{n-1,1} + \alpha_{n,2} u_1 + 2 \sum_{j=3}^{n} \alpha_{n,j} \tau_{j-2,1} \right]^{-1}, \quad n = 2, 3, 4 \ldots, \]

where

\[\tau_{n,k} = \tau_{n-1,k+2} + 2\beta_n \tau_{n-1,k+1} + \alpha_n^2 \tau_{n-2,k} + \beta_n^2 \tau_{n-1,k} + (-1)^n \alpha_{n,1} p_k + \alpha_{n,2} u_k + \alpha_{n,3} u_{k+1} \]

\[+ 2 \sum_{j=3}^{n} \alpha_{n,j} \left[\tau_{j-2,k+2} + \beta_{j-1} \tau_{j-2,k+1} + \beta_n \beta_{j-1} \tau_{j-2,k} \right], \]

(16) \[n = 2, 3, 4 \ldots, k = 1, 2, 3 \]

\[u_k = 2y_0 q_k + s_k + (a_{1,1} + b_{1,1} y_0) q_{k-1} + 2 b_{1,1} s_{k-1} \]

\[\alpha_{k,j} = \alpha_k \alpha_{k-1} \cdots \alpha_j, \quad \alpha_{k,k} = \alpha_k, \quad \alpha_{k-1,k} = 1 \quad \text{and} \quad \alpha_{k,j} = 0, \quad k < j - 1. \]

The starting values for computation are

\[\tau_{0,k} = y_0 q_k + s_k, \]

\[\tau_{1,k} = -a_{1,k+2} y_0 q_{k+2} + s_{k+2} + (a_{1,1} + b_{1,1} y_0) q_{k+1} \]

\[+ 2 b_{1,1} s_{k+1} + a_{1,1} b_{1,1} q_k + b_{1,1} s_k, \quad k = 1, 2, 3 \]

for \(l = 1, \)

\[\alpha_1 = -6g/7, \quad \beta_1 = b_{1,1} \]

\[a_{1,1} = 6g/7 + 56h^2/225g, \quad b_{1,1} = 14h^2/45g; \]

for \(l = 2, \)

\[\alpha_1 = -2/3(a + 2b), \quad \beta_1 = b_{1,1}, \]

\[a_{1,1} = 4a^2 + 16b^2 + 25ab - 9bc - 27ac - 9h \]

\[30(a + 2b), \quad b_{1,1} = 4a^2 - 16b^2 - 19ab + 3bc + 9ac - 3h \]

\[10(a + 2b). \]

In either case, we have
Thus, rational approximations to the incomplete elliptic integrals of the first
and second kind respectively are

\begin{equation}
F_n(\phi, k) = \frac{[\tau(x)]^{1/2}}{s} \left[2x + \frac{A_n(1/x)}{xB_n(1/x)} \right]
\end{equation}

and

\begin{equation}
E_n(\phi, k) = \frac{2x[v(x)]^{-1/2}}{s} \frac{A_n(1/x)}{B_n(1/x)}.
\end{equation}

In the special case, \(k^2 = m = \frac{1}{2} \), the approximation (20) does not apply. However, since \(g = 0 \) in this case, (20) becomes

\begin{equation}
\frac{t(1 + ht)H'_1(t) + \frac{1}{2}(5 + 3ht)H_1(t)}{H_1(0)} = 0, \quad H_1(0) = 4h/5, \quad t = x^2,
\end{equation}

and \(H_1(t) = (4h/5) _2F_1(1, 3/4; 9/4; -ht) \) is the solution to (22). Padé approximations to this hypergeometric function together with an error analysis are available in [3].

Numerical results indicate rapid convergence of the approximations (20) and (21). These approximations are evidently insensitive to changes in \(k^2 \) and are very powerful for \(\phi < \pi/3 \). They weaken as \(\phi \) approaches \(\pi/2 \); however, the Landen transformations

\begin{align*}
F(\phi, k) &= \frac{2}{1 + k} F(\phi_1, k_1), \\
E(\phi, k) &= (1 + k)E(\phi_1, k_1) + (1 - k)F(\phi_1, k_1) - k \sin \phi,
\end{align*}

where

\begin{equation}
k_1 = 2\sqrt{k/(1 + k)} \quad \text{and} \quad \phi_1 = \frac{1}{2} \phi + \frac{1}{2} \arcsin(k \sin \phi),
\end{equation}

should reduce \(\phi \) to the desirable range in all but the extreme cases. For example, if \(k = \frac{1}{2} \) and \(\phi = \pi/2 \) we have

\begin{equation}
F(\frac{1}{2}, \pi/2) = \frac{1}{3}F(2\sqrt{2}/3, \pi/3).
\end{equation}

The approximations \(\frac{1}{3}F_n(2\sqrt{2}/3, \pi/3) \) are listed in Table I.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{n} & \textbf{\(\frac{1}{3}F_n \)} \\
\hline
\hline
4 & 1.68579 & 32446 \\
6 & 1.68575 & 05579 \\
8 & 1.68575 & 03557 \\
10 & 1.68575 & 03548 \\
12 & 1.68575 & 03548 \\
\hline
\end{tabular}
\caption{Table I}
\end{table}

The true value is 1.68575 \ 03548.

We present in Table II a tabulation of \(\varepsilon_n = |F(\phi, k) - F_n(\phi, k)| \) for a number of values of \(n, \phi \) and \(k \). The behavior of the error involved in approximating \(E(\phi, k) \)
by $E_n(\phi, k)$ is almost identical and so is omitted. In both tables $\epsilon_n < 1.0 \times 10^{-8}$ for $\phi \leq 30^\circ$ and $n \geq 4$ (k arbitrary) so that these values are not listed. No entry in the table signifies an error less than 1.0×10^{-8}.

$$k^2 = .75$$

<table>
<thead>
<tr>
<th>ϕ \ n</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°</td>
<td>1.92 (-3)</td>
<td>4.7 (-7)</td>
<td>5.44 (-3)</td>
<td>1.13 (-3)</td>
<td>8.0 (-7)</td>
</tr>
<tr>
<td>80°</td>
<td>1.51 (-1)</td>
<td>2.55 (-2)</td>
<td>5.44 (-3)</td>
<td>1.13 (-3)</td>
<td>8.0 (-7)</td>
</tr>
</tbody>
</table>

* The number in parentheses indicates the power of ten by which the tabular entry is to be multiplied.

The authors thank John Nelson who wrote the FORTRAN program for the computations. This program is available from the authors on request.

Midwest Research Institute
Kansas City, Missouri 64110