Eigenvalues and eigenvectors of Hilbert matrices of order through

Authors:
Henry E. Fettis and James C. Caslin

Journal:
Math. Comp. **21** (1967), 431-441

MSC:
Primary 65.35

DOI:
https://doi.org/10.1090/S0025-5718-1967-0223075-0

MathSciNet review:
0223075

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. A. Fairthorne & J. C. P. Miller, ``Hubert's double series theorem and principal latent roots of the resulting matrix,''*MTAC*, v. 3, 1949, pp. 399-400. MR**10**, 626. MR**0029541 (10:626b)****[2]**H. H. Denman & R. C. W. Ettinger, ``Note on latent roots and vectors of segments of the Hilbert matrix,''*Math. Comp.*, v. 16, 1962, pp. 370-371. MR**26**#5725. MR**0148217 (26:5725)****[3]**I. R. Savage & E. Lukacs ``Tables of inverses of finite segments of the Hilbert matrix,''*Contributions to the Solution of Systems of Linear Equations and the Determination of Eigenvalues*, National Bureau of Standards Applied Math. Series, No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 105-108. MR**16**, 861. MR**0068303 (16:861d)****[4]**John Todd, ``The condition of the finite segments of the Hilbert matrix,''*ibid.*, pp. 109- 116. MR**16**, 861. MR**0068304 (16:861e)****[5]**G. E. Forsythe & Peter Henrici, ``The cyclic Jacobi method for computing the principal values of a complex matrix,''*Trans. Amer. Math. Soc.*, v. 94, 1960, pp. 1-23. MR**22**#710. MR**0109825 (22:710)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.35

Retrieve articles in all journals with MSC: 65.35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1967-0223075-0

Article copyright:
© Copyright 1967
American Mathematical Society