Eigenvalues and eigenvectors of Hilbert matrices of order through
Authors:
Henry E. Fettis and James C. Caslin
Journal:
Math. Comp. 21 (1967), 431441
MSC:
Primary 65.35
MathSciNet review:
0223075
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
R.
A. Fairthorne and J.
C. P. Miller, Hilbert’s double series theorem
and principal latent roots of the resulting matrix, Math. Tables and Other Aids to Computation 3 (1949), 399–400. MR 0029541
(10,626b), http://dx.doi.org/10.1090/S00255718194900295414
 [2]
H.
H. Denman and R.
C. W. Ettinger, Note on latent roots and vectors of
segments of the Hilbert matrix., Math.
Comp. 16 (1962),
370–371. MR 0148217
(26 #5725), http://dx.doi.org/10.1090/S00255718196201482172
 [3]
Richard
Savage and Eugene
Lukacs, Tables of inverses of finite segments of the Hilbert
matrix, Contributions to the solution of systems of linear equations
and the determination of eigenvalues, National Bureau of Standards Applied
Mathematics Series No. 39, U. S. Government Printing Office, Washington, D.
C., 1954, pp. 105–108. MR 0068303
(16,861d)
 [4]
John
Todd, The condition of the finite segments of the Hilbert
matrix, Contributions to the solution of systems of linear equations
and the determination of eigenvalues, National Bureau of Standards Applied
Mathematics Series No. 39, U. S. Government Printing Office, Washington, D.
C., 1954, pp. 109–116. MR 0068304
(16,861e)
 [5]
G.
E. Forsythe and P.
Henrici, The cyclic Jacobi method for computing
the principal values of a complex matrix, Trans. Amer. Math. Soc. 94 (1960), 1–23. MR 0109825
(22 #710), http://dx.doi.org/10.1090/S00029947196001098252
 [1]
 R. A. Fairthorne & J. C. P. Miller, ``Hubert's double series theorem and principal latent roots of the resulting matrix,'' MTAC, v. 3, 1949, pp. 399400. MR 10, 626. MR 0029541 (10:626b)
 [2]
 H. H. Denman & R. C. W. Ettinger, ``Note on latent roots and vectors of segments of the Hilbert matrix,'' Math. Comp., v. 16, 1962, pp. 370371. MR 26 #5725. MR 0148217 (26:5725)
 [3]
 I. R. Savage & E. Lukacs ``Tables of inverses of finite segments of the Hilbert matrix,'' Contributions to the Solution of Systems of Linear Equations and the Determination of Eigenvalues, National Bureau of Standards Applied Math. Series, No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 105108. MR 16, 861. MR 0068303 (16:861d)
 [4]
 John Todd, ``The condition of the finite segments of the Hilbert matrix,'' ibid., pp. 109 116. MR 16, 861. MR 0068304 (16:861e)
 [5]
 G. E. Forsythe & Peter Henrici, ``The cyclic Jacobi method for computing the principal values of a complex matrix,'' Trans. Amer. Math. Soc., v. 94, 1960, pp. 123. MR 22 #710. MR 0109825 (22:710)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.35
Retrieve articles in all journals
with MSC:
65.35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196702230750
PII:
S 00255718(1967)02230750
Article copyright:
© Copyright 1967 American Mathematical Society
