Eigenvalues and eigenvectors of Hilbert matrices of order through

Authors:
Henry E. Fettis and James C. Caslin

Journal:
Math. Comp. **21** (1967), 431-441

MSC:
Primary 65.35

MathSciNet review:
0223075

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. A. Fairthorne and J. C. P. Miller,*Hilbert’s double series theorem and principal latent roots of the resulting matrix*, Math. Tables and Other Aids to Computation**3**(1949), 399–400. MR**0029541**, 10.1090/S0025-5718-1949-0029541-4**[2]**H. H. Denman and R. C. W. Ettinger,*Note on latent roots and vectors of segments of the Hilbert matrix.*, Math. Comp.**16**(1962), 370–371. MR**0148217**, 10.1090/S0025-5718-1962-0148217-2**[3]**Richard Savage and Eugene Lukacs,*Tables of inverses of finite segments of the Hilbert matrix*, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 105–108. MR**0068303****[4]**John Todd,*The condition of the finite segments of the Hilbert matrix*, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 109–116. MR**0068304****[5]**G. E. Forsythe and P. Henrici,*The cyclic Jacobi method for computing the principal values of a complex matrix*, Trans. Amer. Math. Soc.**94**(1960), 1–23. MR**0109825**, 10.1090/S0002-9947-1960-0109825-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65.35

Retrieve articles in all journals with MSC: 65.35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1967-0223075-0

Article copyright:
© Copyright 1967
American Mathematical Society