The efficient calculation of the incomplete betafunction ratio for halfinteger values of the parameters
Authors:
A. R. DiDonato and M. P. Jarnagin
Journal:
Math. Comp. 21 (1967), 652662
MSC:
Primary 65.20
MathSciNet review:
0221730
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [2]
Harald
Cramér, Mathematical Methods of Statistics, Princeton
Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J.,
1946. MR
0016588 (8,39f)
 [3]
A. R. DiDonato & M. P. Jarnagin, "A method for computing the incomplete beta function ratio," NWL Report 1949 (revised), U. S. Naval Weapons Lab., Dahlgren, Virginia, 1966.
 [4]
Henry
E. Fettis, On the calculation of integrals of the form
∫^{𝜃}₀sin^{𝑝}𝜑cos^{𝑞}𝜑𝑑𝜑,
J. Math. Physics 33 (1954), 283–289. MR 0064484
(16,289d)
 [5]
W. Gautschi, "Incomplete beta function ratios," Comm. ACM, v. 7, 1964, p. 143.
 [6]
F.
B. Hildebrand, Introduction to numerical analysis, McGrawHill
Book Company, Inc., New YorkTorontoLondon, 1956. MR 0075670
(17,788d)
 [7]
O. Ludwig, "Incomplete beta ratio," Comm. ACM, v. 6, 1963, p. 314.
 [8]
E. C. Molina, "Expansions for Laplacian integrals of the form ," Bell. System Tech. J., v. 11, 1932, p. 563.
 [9]
Tables of the incomplete betafunction, Originally prepared under
the direction of and edited by Karl Pearson. Second edition with a new
introduction by E. S. Pearson and N. L. Johnson, Published for the
Biometrika Trustees at the Cambridge University Press, London, 1968. MR 0226815
(37 #2402)
 [10]
H. E. Soper, The Numerical Evaluation of the Incomplete BFunction or of the Integral for Ranges of x Between 0 and 1, Tracts for Computers, No. VII, Cambridge Univ. Press, New York, 1921.
 [11]
I. C. Tang, "On the computation of a certain type of incomplete beta functions," Comm. ACM, v. 6, 1963, p. 689.
 [12]
Catherine
M. Thompson, Tables of percentage points of the incomplete
betafunction, Biometrika 32 (1941), 151–181.
Prefatory note by E. S. Pearson; description of the calculation by L. J.
Comrie and H. O. Hartley; methods of interpolation by H. O. Hartley. MR 0005429
(3,153a)
 [13]
Francesco
Giacomo Tricomi, Differential equations, Translated by
Elizabeth A. McHarg, Hafner Publishing Co., New York, 1961. MR 0138812
(25 #2254b)
 [14]
M.
E. Wise, The incomplete beta function as a contour integral and a
quickly converging series for its inverse, Biometrika
37 (1950), 208–218. MR 0040622
(12,724e)
 [15]
M.
E. Wise, The incomplete beta function and the incomplete gamma
function: An acknowledgment, J. Roy. Statist. Soc. Ser. B.
10 (1948), 264. MR 0028475
(10,453c)
 [16]
M.
E. Wise, The use of the negative binomial distribution in an
industrial sampling problem, Suppl. J. Roy. Statist. Soc.
8 (1946), 202–211. MR 0021289
(9,49c)
 [17]
J. Wishart, "Determination of for large values of , and its application to the probability integral of symmetrical frequency curves," Biometrika, v. 17, 1925, pp. 68, 469.
 [18]
Tables of the cumulative binomial probability distribution, The
Annals of the Computation Laboratory of Harvard University, vol. 35,
Harvard University Press, Cambridge, Mass., 1955. MR 0082203
(18,517c)
 [19]
Tables of the Binomial Probability Distribution, National Bureau
of Standards, Applied Mathematics Series, No. 6, United States Government
Printing Office, Washington, D. C., 1950. MR 0035108
(11,692c)
 [1]
 M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, National Bureau of Standards Appl. Math. Series, 55, U. S. Government Printing Office, Washington, D. C., 1964. MR 29 #4914. MR 0167642 (29:4914)
 [2]
 H. Cramér, Mathematical Methods of Statistics, Princeton Math. Series, Vol. 9, Princeton Univ. Press, Princeton, N. J., 1946. MR 8, 39. MR 0016588 (8:39f)
 [3]
 A. R. DiDonato & M. P. Jarnagin, "A method for computing the incomplete beta function ratio," NWL Report 1949 (revised), U. S. Naval Weapons Lab., Dahlgren, Virginia, 1966.
 [4]
 H. E. Fettis, "On the calculation of integrals of the form ," J. Math. Phys., v. 33, 1959, p. 283. MR 0064484 (16:289d)
 [5]
 W. Gautschi, "Incomplete beta function ratios," Comm. ACM, v. 7, 1964, p. 143.
 [6]
 F. B. Hildebrand, Introduction to Numerical Analysis, McGrawHill, New York, 1956. MR 17, 788. MR 0075670 (17:788d)
 [7]
 O. Ludwig, "Incomplete beta ratio," Comm. ACM, v. 6, 1963, p. 314.
 [8]
 E. C. Molina, "Expansions for Laplacian integrals of the form ," Bell. System Tech. J., v. 11, 1932, p. 563.
 [9]
 K. Pearson, Tables of the Incomplete Beta Function, Cambridge Univ. Press, New York, 1934. MR 0226815 (37:2402)
 [10]
 H. E. Soper, The Numerical Evaluation of the Incomplete BFunction or of the Integral for Ranges of x Between 0 and 1, Tracts for Computers, No. VII, Cambridge Univ. Press, New York, 1921.
 [11]
 I. C. Tang, "On the computation of a certain type of incomplete beta functions," Comm. ACM, v. 6, 1963, p. 689.
 [12]
 C. M. Thompson, "Tables of percentage points of the incomplete beta function," Biometrika, v. 32, 1941, pp. 151181. MR 3, 153. MR 0005429 (3:153a)
 [13]
 F. G. Tricomi, Differential Equations, Hafner, New York, 1961. MR 25 #2254b. MR 0138812 (25:2254b)
 [14]
 M. E. Wise, "The incomplete beta function as a contour integral and a quickly converging series for its inverse," Biometrika, v. 37, 1950, pp. 208218. MR 12, 724. MR 0040622 (12:724e)
 [15]
 M. E. Wise, "The incomplete beta function and the incomplete gamma function," J. Roy. Statist. Soc. Ser. B, v. 10, 1948, p. 264. MR 10, 453. MR 0028475 (10:453c)
 [16]
 M. E. Wise, "The use of the binomial distribution in an industrial sampling problem," Suppl. J. Roy. Statist. Soc. Ser. B, v. 8, 1946, pp .202211. MR 9, 49. MR 0021289 (9:49c)
 [17]
 J. Wishart, "Determination of for large values of , and its application to the probability integral of symmetrical frequency curves," Biometrika, v. 17, 1925, pp. 68, 469.
 [18]
 Staff of the Computation Laboratory, Tables of the Cumulative Binomial Probability Distribution, Harvard Univ. Press, Cambridge, Mass., 1955. MR 18, 517. MR 0082203 (18:517c)
 [19]
 National Bureau of Standards, Tables of the Binomial Probability Distribution, Appl. Math. Series, No. 6, U. S. Government Printing Office, Washington, D. C., 1950. MR 0035108 (11:692c)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.20
Retrieve articles in all journals
with MSC:
65.20
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819670221730X
PII:
S 00255718(1967)0221730X
Article copyright:
© Copyright 1967
American Mathematical Society
