Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The asymptotic representation of a class of $ G$-functions for large parameter


Author: Jet Wimp
Journal: Math. Comp. 21 (1967), 639-646
MSC: Primary 33.21
DOI: https://doi.org/10.1090/S0025-5718-1967-0223617-5
MathSciNet review: 0223617
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Erdélyi, et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953, Chapter 5. MR 15, 419.
  • [2] Y. L. Luke & Jet Wimp, "Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray," Math. Comp., v. 17, 1963, pp. 395-404. MR 28 #255. MR 0157014 (28:255)
  • [3] R. K. Saxena, "Some formulae for the G-function," Proc. Cambridge Philos. Soc., v. 59, 1963, pp. 347-350. MR 26 #6448. MR 0148952 (26:6448)
  • [4] Reference 1, p. 208, formula (5).
  • [5] C. S. Meijer, "On the G-function. I," Nederl. Akad. Welensch., v. 49, 1946, p. 234, formulae (22)-(24). MR 8, 156. MR 0017452 (8:156a)
  • [6] Géza Németh, "Polynomial approximations to the function $ \psi (a,c;x)$," Reports of the Central Institute for Physics, Budapest, 1965.
  • [7] G. F. Miller, "On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation," J. Soc. Indust. Appl. Math. Ser. Numer. Anal., v. 3, 1966, pp. 390-409. MR 0203312 (34:3165)
  • [8] George Birkhoff & W. J. Trjitzinsky, "The analytic theory of singular difference equations," Acta Math., v. 60, 1932, pp. 1-89.
  • [9] Reference 1, p. 218.
  • [10] Géza Németh, (a) "Chebyshev expansions of Bessel functions. $ {\text{I}}:{J_\nu }(x)$ and $ {N_\nu }(x)$";(b)"Chebyshev expansions of integral sine and integral cosine functions," same reports as Reference 6.
  • [11] Géza Németh, "Chebyshev expansions for Fresnel integrals," Numer. Math., v. 7, 1965, pp. 310-312. MR 32 #3265. MR 0185805 (32:3265)
  • [12] R. E. Langer, "Turning points in linear asymptotic theory," Bol. Soc. Mat. Mexicana (2), v. 5, 1960, pp. 1-12. MR 22 #11183. MR 0120429 (22:11183)
  • [13] H. L. Turrittin, "The formal theory of systems of irregular homogeneous linear difference and differential equations," Bol. Soc. Mat. Mexicana, (2), v. 5, 1960, pp. 255-264. MR 25 #349. MR 0136888 (25:349)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33.21

Retrieve articles in all journals with MSC: 33.21


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1967-0223617-5
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society