A numerical method for locating the zeros of an analytic function

Authors:
L. M. Delves and J. N. Lyness

Journal:
Math. Comp. **21** (1967), 543-560

MSC:
Primary 65.50

DOI:
https://doi.org/10.1090/S0025-5718-1967-0228165-4

MathSciNet review:
0228165

Full-text PDF

References | Similar Articles | Additional Information

**[1]**P. Henrici and Bruce O. Watkins,*Finding zeros of a polynomial by the 𝑄-𝐷 algorithm*, Comm. ACM**8**(1965), 570–574. MR**0179935**, https://doi.org/10.1145/365559.365619**[2]**D. H. Lehmer,*The Graeffe process as applied to power series*, Mathematical Tables and other Aids to Computation**1**(1945), 377–383. MR**0012913**, https://doi.org/10.1090/S0025-5718-1945-0012913-8**[3]**D. H. Lehmer, "A machine method for solving polynomial equations,"*J. Assoc. Comput. Mach.*, v. 8, 1961, pp. 151-162.**[4]**R. D. Low, "On the first positive zero of , considered as a function of ,"*Math. Comp.*, v. 20, 1966, pp. 421-24.**[5]**J. N. Lyness and L. M. Delves,*On numerical contour integration round a closed contour*, Math. Comp.**21**(1967), 561–577. MR**0229388**, https://doi.org/10.1090/S0025-5718-1967-0229388-0**[6]**J. N. Lyness and C. B. Moler,*Numerical differentiation of analytic functions*, SIAM J. Numer. Anal.**4**(1967), 202–210. MR**0214285**, https://doi.org/10.1137/0704019**[7]**F. W. J. Olver,*The evaluation of zeros of high-degree polynomials*, Philos. Trans. Roy. Soc. London. Ser. A.**244**(1952), 385–415. MR**0049652**, https://doi.org/10.1098/rsta.1952.0010**[8]**Heinz Rutishauser,*Der Quotienten-Differenzen-Algorithmus*, Z. Angew. Math. Physik**5**(1954), 233–251 (German). MR**0063763****[9]**J. H. Wilkinson,*Rounding errors in algebraic processes*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR**0161456**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.50

Retrieve articles in all journals with MSC: 65.50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1967-0228165-4

Article copyright:
© Copyright 1967
American Mathematical Society