TABLE ERRATA

On p. 80, in Figure 4.5, the graphs of the principal values of arcsec x and arccsc x for x < 0 should each be translated π units in the negative y direction. The corresponding range for arcsec x is $-\pi \leq y < -\pi/2$, and that for arccsc x is $-\pi < y \leq -\pi/2$.

Richmond G. Albert
Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts 02138

The following corrections supplement those enumerated in a review [1] of this publication.

P. 18, eq. (96): for $B = \frac{x^2}{(n + 1)^2}$, read $B = -\frac{x^2}{(n + 1)^2}$.

P. 36, eq. (191): for $+ m_2 C_n$, read $+ \cdots + m_2 C_n$.

P. 36, eq. (194): for $n \cdot m C_n x^{n-1}$, read $n \cdot m C_n x^{n-1}$.

P. 64, eq. (351): for $1/(5 \cdot 3^3)$, read $1/(5 \cdot 3^5)$.

P. 67, eq. (358): for 1.0787, read 1.074833072; for $\frac{1}{30(n + 1/4)^5}$, read $-\frac{1}{30(n + 1/4)^5}$.

P. 67, eq. (360b): for $\pi^2/12$, read $-\pi^2/12$.

P. 68, eq. (369): for $\sum \frac{1}{x}$, read $\sum \frac{1}{x}$.

P. 72, eq. (385): for $\omega_2 = \sum \frac{(-1)^{k-1}}{(2k + 1)^2}$, read $\omega_2 = \sum \frac{(-1)^{k}}{(2k + 1)^2}$.

P. 72, 1.-2: for $n = r/2$, read $n = -r/2$.

P. 75, eq. (395): for “where n is even”, read “where m is even”.

747
TABLE ERRATA

P. 77, eq. (404): for $= 1$, read $= 1$ for $n = a$ positive even integer.

P. 77, eq. (409): for $11/\pi - 4$, read $16/\pi - 4$.

P. 82, eqs. (439), (440): add "where $\theta = \pi/n$".

P. 82, eqs. (441), (442): add "where $\theta = \pi/2n$".

P. 87, eq. (462): for $\frac{1}{2^n} \cot \frac{\theta}{2^n}$, read $\left(\frac{1}{2^n} \cot \frac{\theta}{2^n}\right)^2$.

P. 91, eq. (481): for $\cos n\theta \cos n\theta$, read $\cos n\theta$.

P. 91, eqs. (485), (486): add "and n is odd".

P. 97, eq. (506): for $\pi/4$, where $-\pi/2 < \theta < \pi/2$,
read $\pi/4$ for $0 < \theta < \pi/2$ and $-\pi/4$ for $\pi/2 < \theta < \pi$.

P. 101, eq. (527): for $-\pi/2 < \theta < \pi/2$,
read $-\pi/4$ for $0 < \theta < \pi/2$ and $-\pi/4$ for $\pi/2 < \theta < \pi$.

P. 110, eq. (592): in the left member for $\sin \theta$, read $\sin n\theta$.

P. 123, eq. (646): for $\frac{4}{\pi} \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(n/2 + 1\right)}{\Gamma\left(n/2 + 3/2\right)}$, read $\frac{2\Gamma\left(n/2 + 1\right)}{\sqrt{\pi}\Gamma\left(n/2 + 3/2\right)}$.

P. 124, eq. (672): for $2!$, read 2.

P. 126, eq. (679): for $\frac{3}{3} \sin 3\theta \sin 2a$, read $\frac{3}{3} \sin 3\theta \sin 3a$.

P. 127, eqs. (675), (676): add "and $n = 0$".

P. 134, eq. (720): delete the factor $1/n$ before the summation sign.

P. 138, eq. (732): for \sum_1^0, read \sum_0^0.

P. 140, eq. (736): for α^n, read α_n.

P. 142, eq. (752): for $2!$, read $3!$; for $4!$, read $5!$; and for $(2n - 2)!$, read $(2n - 1)!$.

P. 144, eq. (757): for $2^n - 1$, read $2^{n-1} - 1$.

P. 144, eq. (764): for $\frac{8\theta}{(2n + 1)^2 \pi^2 - 4\theta^2}$, read $\frac{8\theta}{(2n + 1)^2 \pi^2 - 4\theta^2}$.

P. 145, eq. (764): for $\theta \neq n\pi$, read $\theta \neq (2n + 1)\frac{\pi}{2}$.

P. 148, eq. (792): for $\theta^4/90$, read $\theta^4/96$.

P. 148, eq. (794): for $\frac{7}{96} \theta^4$, read $\frac{7}{90} \theta^4$.
P. 150, eq. (797): for $\theta/240$, read $-\theta/240$.

P. 150, eq. (808): for $7\theta^/24$, read $-7\theta^/24$.

P. 160, eq. (864): for t^a_4, read t^a_3; and on the right side
\[
\sin \left(\frac{\pi}{6} - \frac{\pi a}{4} \right), \text{read } \sin \left(\frac{\pi}{6} - \frac{\pi a}{6} \right).
\]

P. 164, eq. (884): for \sum_1^n, read \sum_0^n.

P. 168, eq. (898): for \sum_0^n in the right member of the first equality,
\[
\text{read } \sum_1^n; \text{ in the same summation,}
\]
\[
\text{for } (-1)^n, \text{ read } (-1)^{n+1}.
\]

P. 168, eq. (899): for \sum_0^n, read \sum_1^n.

P. 168, eq. (901): for $+ \frac{2}{3} \frac{\theta^4}{4}$, read $- \frac{2}{3} \frac{\theta^4}{4}$.

P. 169, eq. (897): for $\theta^2 < \pi/4$, read $\theta^2 < \pi^2/4$.

P. 174, eq. (939): for \sum_0^n, read \sum_1^n.

P. 174, eq. (940): for \sum_0^n, read $- \sum_1^n$.

P. 192, eq. (1037): for $(1 + k/\theta)^2$, read $1 + (k/\theta)^2$.

P. 192, eq. (1041): for \prod_0^{n-1}, read \prod_1^{n-1}; add "where $a = \frac{\pi}{n}$".

P. 192, eq. (1042): for $\frac{\tan n\pi}{2n}$, read $\tan \frac{n\pi}{2n}$.

P. 194, eq. (1046): for $\sin \left(\theta + \frac{3\pi}{n} \right)$, read $\sin \left(\theta + \frac{3\pi}{2n} \right)$.

P. 195, eq. (1051): delete "when r is a positive or negative integer or zero".

P. 200, eq. (1081): for $1 + x^{2n}$, read $1 + x^{2n}$.

P. 202, eq. (1093): for $\int_0^z t^{m+2n}(1 - t^2) - \frac{1}{2} dt$, read $\int_0^z t^{m+2n}(1 - t^2)^{-1/2} dt$.

P. 208, 1.6: for $\psi(n)$, read $\psi(n + 1)$.

P. 224, eq. (1118): for $\frac{m+n}{m!n!}$, read $\frac{(m+n)!}{m!n!}$.
TABLE ERRATA

P. 226, eq. (1120) : for $\frac{1}{(p + s)^r}$, read $\frac{1}{(p + s)^r}$.

P. 226, eq. (1126) : for $\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} \cdots \right)$, read $\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \cdots \right)$;

and for $0 \leq y < x \leq \frac{1}{2}$, read $0 \leq y \leq x \leq \frac{1}{2}$.

P. 237, 1.11 : for $J_n = 2(r^{2n} + 1)I_n$, read $J_n = 2(2^{2n} + 1)I_n$.

P. 237, last line : for q_n, read q_{2n}.

P. 243, eq. (1135) : for $(-1)^{(n-1)/2}$, read $(-1)^{(n+1)/2}$.

PP. 246, 247, seventh and eighth equations : for A_{2n} and A_n, read B_{2n}.

E. R. Hansen & M. L. Patrick

Lockheed Research Laboratories
Palo Alto, California

Duke University
Durham, North Carolina

Editorial note: For an earlier reference to the error in eq. (808), on p. 150, see Math. Comp., v. 14, 1960, p. 402, MTE 293.

In addition to the corrections noted in a review [1] of this book, the following changes should also be made:

P. 30, eq. (25) : Replace $\frac{1}{4} z$ by $\frac{1}{4} z$.

P. 40, eqs. (10), (14) : Insert $(-1)^{m-1}$ in the summand.

P. 68, eq. (13) : Replace $I_{-}(2z)$ by $I_{-}(2z)$.

P. 69, eq. (18) : Replace $|x| \leq 1$ by $|x| \leq 1$.

P. 79, eq. (4) : Replace cosec z by cosec πz.

P. 89, eq. (13) : Replace $(1 - t)k$ by $(1 - t)^k$.

P. 95, eq. (3) : The right member should read

\[
\begin{cases}
\pi/4, & 0 \leq \theta < \pi/2; \\
0, & \theta = \pi/2; \\
-\pi/4, & \pi/2 < \theta \leq \pi.
\end{cases}
\]

P. 101, eq. (9) : Replace the conditions by $0 < \theta < \alpha$.

P. 109, eq. (28) : In the next to the last line, replace $C_{k,2s}$ by $C_{k,2s+1}$.

In the last line, replace $C_{k,2s-1}$ by $C_{k,2s}$ and

replace $\sum_{j=-s}^{s}$ by $\sum_{j=-s}^{s-1}$.
P. 112, eq. (5): Replace $\frac{1}{2} z$ by $\frac{1}{4} z$.

P. 119, eq. (17): Multiply the right member by $z/2$.

P. 119, eq. (18): Multiply the right member by $1/v$.

P. 125, eq. (9): The right member should read
\[
\begin{cases}
-1/2, & -1 \leq x < 0 ; \\
0, & x = 0 ; \\
1/2, & 0 < x \leq 1 .
\end{cases}
\]

E. R. Hansen & M. L. Patrick

Page 89, Theorem 2:
\[\text{for } N - 1 = \prod p_i^{a_i} , \text{ read } N - 1 = \prod q_i^{a_i} .\]

Page 91, line 9 after Table 1:
\[\text{for Table 1 below, read Table 1 above.}\]

Page 93, factorization 17:
\[\text{for 210559, read 210599.}\]

Page 94, factorization 30:
\[\text{for 3.331, read 3 \cdot 331.}\]

John Brillhart