On the calculation of the inverse of the error function
Author:
Anthony Strecok
Journal:
Math. Comp. 22 (1968), 144158
MSC:
Primary 65.25
MathSciNet review:
0223070
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Formulas are given for computing the inverse of the error function to at least 18 significant decimal digits for all possible arguments up to in magnitude. A formula which yields to at least 22 decimal places for is also developed.
 [1]
R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants," Technometrics, v. 2, 1960, pp. 209223.
 [2]
Henry
Goldberg and Harriet
Levine, Approximate formulas for the percentage points and
normalization of 𝑡 and 𝜒², Ann. Math. Statistics
17 (1946), 216–225. MR 0016611
(8,42j)
 [3]
John
Wishart, 𝜒² probabilities for large numbers of degrees
of freedom, Biometrika 43 (1956), 92–95. MR 0079385
(18,78d)
 [4]
Edward
Paulson, An approximate normalization of the analysis of variance
distribution, Ann. Math. Statistics 13 (1942),
233–235. MR 0006668
(4,23g)
 [5]
J.
R. Philip, The function inverfc 𝜃, Austral. J. Phys.
13 (1960), 13–20. MR 0118857
(22 #9626)
 [6]
L.
Carlitz, The inverse of the error function, Pacific J. Math.
13 (1963), 459–470. MR 0153878
(27 #3839)
 [7]
H. Kuki, Mathematical Functions, a Description of the Center's 7094 FORTRAN II Mathematical Function Library, University of Chicago Computation Center, February 1966, pp. 205214.
 [8]
J.
Barkley Rosser, Theory and Application of
∫_{0^{𝑧}}𝑒^{𝑥²}𝑑𝑥 and
∫_{0^{𝑧}}𝑒^{𝑝²𝑦²}𝑑𝑦∫^{𝑦}₀𝑒^{𝑥²}𝑑𝑥.
Part I. Methods of Computation, Mapleton House, Brooklyn, N. Y., 1948.
MR
0027176 (10,267e)
 [9]
H.
S. Wall, Analytic Theory of Continued Fractions, D. Van
Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596
(10,32d)
 [10]
H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials," Comm. ACM, v. 7, 1964, pp. 181, 182.
 [11]
Cecil
Hastings Jr., Approximations for digital computers, Princeton
University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and
James P. Wong, Jr. MR 0068915
(16,963e)
 [12]
F.
B. Hildebrand, Introduction to numerical analysis, McGrawHill
Book Company, Inc., New YorkTorontoLondon, 1956. MR 0075670
(17,788d)
 [1]
 R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants," Technometrics, v. 2, 1960, pp. 209223.
 [2]
 H. Goldberg & H. Levine, "Approximate formulas for the percentage points and normalization of and ," Ann. Math. Statistics, v. 17, 1946, pp. 216225. MR 8, 42. MR 0016611 (8:42j)
 [3]
 J. Wishart, " probabilities for large numbers of degrees of freedom," Biometrika, v. 43, 1956, pp. 9295. MR 18, 78. MR 0079385 (18:78d)
 [4]
 E. Paulson, "An approximate normalization of the analysis of variance distribution," Ann. Math. Statistics, v. 13, 1942, pp. 233235. MR 4, 23. MR 0006668 (4:23g)
 [5]
 J. R. Philip, "The function inverfc ," Austral. J. Phys., v. 13, 1960, pp. 1320. MR 22 #9626. MR 0118857 (22:9626)
 [6]
 L. Carlitz, "The inverse of the error function," Pacific J. Math., v. 13, 1963, pp. 459470. MR 27 #3839. MR 0153878 (27:3839)
 [7]
 H. Kuki, Mathematical Functions, a Description of the Center's 7094 FORTRAN II Mathematical Function Library, University of Chicago Computation Center, February 1966, pp. 205214.
 [8]
 J. B. Rosser, Theory and Application of and , Part 1: Methods of Computation, ORSD 5861, Mapleton House, Brooklyn, N. Y., 1948, p. 32. MR 10, 267. MR 0027176 (10:267e)
 [9]
 H. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, N. J., 1948, p. 358. MR 10, 32. MR 0025596 (10:32d)
 [10]
 H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials," Comm. ACM, v. 7, 1964, pp. 181, 182.
 [11]
 C. Hastings, Approximations for Digital Computers, Princeton Univ. Press, Princeton, N. J., 1955, pp. 191192. MR 16, 963. MR 0068915 (16:963e)
 [12]
 F. B. Hildebrand, Introduction to Numerical Analysis, McGrawHill, New York, 1956, pp. 389395. MR 17, 788. MR 0075670 (17:788d)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.25
Retrieve articles in all journals
with MSC:
65.25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196802230702
PII:
S 00255718(1968)02230702
Article copyright:
© Copyright 1968
American Mathematical Society
