Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the calculation of the inverse of the error function


Author: Anthony Strecok
Journal: Math. Comp. 22 (1968), 144-158
MSC: Primary 65.25
MathSciNet review: 0223070
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Formulas are given for computing the inverse of the error function to at least 18 significant decimal digits for all possible arguments up to $ 1 - {10^{ - 300}}$ in magnitude.

A formula which yields $ (x)$ to at least 22 decimal places for $ \vert x\vert \leqq 5\pi /2$ is also developed.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants," Technometrics, v. 2, 1960, pp. 209-223.
  • [2] Henry Goldberg and Harriet Levine, Approximate formulas for the percentage points and normalization of 𝑡 and 𝜒², Ann. Math. Statistics 17 (1946), 216–225. MR 0016611 (8,42j)
  • [3] John Wishart, 𝜒² probabilities for large numbers of degrees of freedom, Biometrika 43 (1956), 92–95. MR 0079385 (18,78d)
  • [4] Edward Paulson, An approximate normalization of the analysis of variance distribution, Ann. Math. Statistics 13 (1942), 233–235. MR 0006668 (4,23g)
  • [5] J. R. Philip, The function inverfc 𝜃, Austral. J. Phys. 13 (1960), 13–20. MR 0118857 (22 #9626)
  • [6] L. Carlitz, The inverse of the error function, Pacific J. Math. 13 (1963), 459–470. MR 0153878 (27 #3839)
  • [7] H. Kuki, Mathematical Functions, a Description of the Center's 7094 FORTRAN II Mathematical Function Library, University of Chicago Computation Center, February 1966, pp. 205-214.
  • [8] J. Barkley Rosser, Theory and Application of ∫_{0^{𝑧}}𝑒^{-𝑥²}𝑑𝑥 and ∫_{0^{𝑧}}𝑒^{-𝑝²𝑦²}𝑑𝑦∫^{𝑦}₀𝑒^{-𝑥²}𝑑𝑥. Part I. Methods of Computation, Mapleton House, Brooklyn, N. Y., 1948. MR 0027176 (10,267e)
  • [9] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596 (10,32d)
  • [10] H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials," Comm. ACM, v. 7, 1964, pp. 181, 182.
  • [11] Cecil Hastings Jr., Approximations for digital computers, Princeton University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and James P. Wong, Jr. MR 0068915 (16,963e)
  • [12] F. B. Hildebrand, Introduction to numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR 0075670 (17,788d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1968-0223070-2
PII: S 0025-5718(1968)0223070-2
Article copyright: © Copyright 1968 American Mathematical Society