On the calculation of the inverse of the error function

Author:
Anthony Strecok

Journal:
Math. Comp. **22** (1968), 144-158

MSC:
Primary 65.25

DOI:
https://doi.org/10.1090/S0025-5718-1968-0223070-2

MathSciNet review:
0223070

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Formulas are given for computing the inverse of the error function to at least 18 significant decimal digits for all possible arguments up to in magnitude.

A formula which yields to at least 22 decimal places for is also developed.

**[1]**R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants,"*Technometrics*, v. 2, 1960, pp. 209-223.**[2]**Henry Goldberg and Harriet Levine,*Approximate formulas for the percentage points and normalization of 𝑡 and 𝜒²*, Ann. Math. Statistics**17**(1946), 216–225. MR**0016611****[3]**John Wishart,*𝜒² probabilities for large numbers of degrees of freedom*, Biometrika**43**(1956), 92–95. MR**0079385****[4]**Edward Paulson,*An approximate normalization of the analysis of variance distribution*, Ann. Math. Statistics**13**(1942), 233–235. MR**0006668****[5]**J. R. Philip,*The function inverfc 𝜃*, Austral. J. Phys.**13**(1960), 13–20. MR**0118857****[6]**L. Carlitz,*The inverse of the error function*, Pacific J. Math.**13**(1963), 459–470. MR**0153878****[7]**H. Kuki,*Mathematical Functions, a Description of the Center's*7094 FORTRAN II*Mathematical Function Library*, University of Chicago Computation Center, February 1966, pp. 205-214.**[8]**J. Barkley Rosser,*Theory and Application of ∫_{0^{𝑧}}𝑒^{-𝑥²}𝑑𝑥 and ∫_{0^{𝑧}}𝑒^{-𝑝²𝑦²}𝑑𝑦∫^{𝑦}₀𝑒^{-𝑥²}𝑑𝑥. Part I. Methods of Computation*, Mapleton House, Brooklyn, N. Y., 1948. MR**0027176****[9]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596****[10]**H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials,"*Comm. ACM*, v. 7, 1964, pp. 181, 182.**[11]**Cecil Hastings Jr.,*Approximations for digital computers*, Princeton University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and James P. Wong, Jr. MR**0068915****[12]**F. B. Hildebrand,*Introduction to numerical analysis*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR**0075670**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1968-0223070-2

Article copyright:
© Copyright 1968
American Mathematical Society