Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the calculation of the inverse of the error function


Author: Anthony Strecok
Journal: Math. Comp. 22 (1968), 144-158
MSC: Primary 65.25
DOI: https://doi.org/10.1090/S0025-5718-1968-0223070-2
MathSciNet review: 0223070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Formulas are given for computing the inverse of the error function to at least 18 significant decimal digits for all possible arguments up to $ 1 - {10^{ - 300}}$ in magnitude.

A formula which yields $ (x)$ to at least 22 decimal places for $ \vert x\vert \leqq 5\pi /2$ is also developed.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants," Technometrics, v. 2, 1960, pp. 209-223.
  • [2] H. Goldberg & H. Levine, "Approximate formulas for the percentage points and normalization of $ t$ and $ {\chi ^2}$," Ann. Math. Statistics, v. 17, 1946, pp. 216-225. MR 8, 42. MR 0016611 (8:42j)
  • [3] J. Wishart, "$ {\chi ^2}$ probabilities for large numbers of degrees of freedom," Biometrika, v. 43, 1956, pp. 92-95. MR 18, 78. MR 0079385 (18:78d)
  • [4] E. Paulson, "An approximate normalization of the analysis of variance distribution," Ann. Math. Statistics, v. 13, 1942, pp. 233-235. MR 4, 23. MR 0006668 (4:23g)
  • [5] J. R. Philip, "The function inverfc $ \theta $," Austral. J. Phys., v. 13, 1960, pp. 13-20. MR 22 #9626. MR 0118857 (22:9626)
  • [6] L. Carlitz, "The inverse of the error function," Pacific J. Math., v. 13, 1963, pp. 459-470. MR 27 #3839. MR 0153878 (27:3839)
  • [7] H. Kuki, Mathematical Functions, a Description of the Center's 7094 FORTRAN II Mathematical Function Library, University of Chicago Computation Center, February 1966, pp. 205-214.
  • [8] J. B. Rosser, Theory and Application of $ \int_0^z {{e^{ - {x^2}}}dx} $ and $ \int_0^z {{e^{ - {p^2}{y^2}}}dy\int_0^y {{e^{ - {x^2}}}dx} } $, Part 1: Methods of Computation, ORSD 5861, Mapleton House, Brooklyn, N. Y., 1948, p. 32. MR 10, 267. MR 0027176 (10:267e)
  • [9] H. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, N. J., 1948, p. 358. MR 10, 32. MR 0025596 (10:32d)
  • [10] H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials," Comm. ACM, v. 7, 1964, pp. 181, 182.
  • [11] C. Hastings, Approximations for Digital Computers, Princeton Univ. Press, Princeton, N. J., 1955, pp. 191-192. MR 16, 963. MR 0068915 (16:963e)
  • [12] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, pp. 389-395. MR 17, 788. MR 0075670 (17:788d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0223070-2
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society