Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Interpolation and quadrature methods for ordinary differential equations


Author: G. J. Cooper
Journal: Math. Comp. 22 (1968), 69-76
MSC: Primary 65.61
DOI: https://doi.org/10.1090/S0025-5718-1968-0224289-7
MathSciNet review: 0224289
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of single-step methods is constructed for solving systems of differential equations. These methods are based on the use of interpolation and quadrature formulae, and are related to some implicit methods of Runge-Kutta type. Weight functions may be used to cope with difficult behaviour.


References [Enhancements On Off] (What's this?)

  • [1] L. Stoller & D. Morrison, "A method for the numerical integration of ordinary differential equations," MTAC, v. 12, 1958, pp. 269-272. MR 21 #974. MR 0102180 (21:974)
  • [2] J. T. Day, "A one-step method for the numerical integration of the differential equation $ y'' = f(x)y + g(x)$," Comput. J., v. 7, 1965, pp. 314-317. MR 30 #4385. MR 0174178 (30:4385)
  • [3] G. J. Cooper & E. Gal, "Single step methods for linear differential equations," Numer. Math. (To appear.) MR 0220449 (36:3509)
  • [4] G. J. Cooper, "A class of single-step methods for systems of nonlinear differential equations," Math. Comp., v. 21, 1967, pp. 597-610. MR 0223103 (36:6152)
  • [5] J. C Butcher, "Coefficients for the study of Runge-Kutta integration processes," J. Austral. Math. Soc., v. 3, 1963, pp. 185-201. MR 27 #2109. MR 0152129 (27:2109)
  • [6] J. C. Butcher, "Implicit Runge-Kutta processes," Math. Comp., v. 18, 1964, pp. 50-64. MR 28 #2641. MR 0159424 (28:2641)
  • [7] J. C. Butcher, "Integration processes based on Radau quadrature formulas," Math. Comp., v. 18, 1964, pp. 233-244. MR 29 #2973. MR 0165693 (29:2973)
  • [8] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956. MR 0010757 (6:65f)
  • [9] L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, New York, 1960. MR 0043339 (13:245c)
  • [10] J. Todd (Editor), A Survey of Numerical Analysis, McGraw-Hill, New York, 1962. MR 24 #B1271. MR 0135221 (24:B1271)
  • [11] G. Szegö, Orthogonal Polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc, Providence, R. I., 1959. MR 21 #5029.
  • [12] A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1966. MR 0216746 (35:7575)
  • [13] W. Richter, "Estimation de l'erreur commise dans la méthode de M. W. E. Milne pour l'intégration d'un système de n équations différentielles du premier ordre," Bull. Soc. Neuchâteloise Sci. Nat., v. 75, 1952, pp. 1-43. (Thèse, Univ. de Neuchâtel, 1952.) MR 16, 865.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.61

Retrieve articles in all journals with MSC: 65.61


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0224289-7
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society