Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On numerical calculation of transonic flow patterns

Authors: S. Bergman, J. G. Herriot and T. G. Kurtz
Journal: Math. Comp. 22 (1968), 13-27
MSC: Primary 76.65
MathSciNet review: 0224335
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, "The hodograph method in the theory of compressible fluids," Supplement to Fluid Dynamics by R. von Mises and K. O. Friedrichs, Brown University, Providence, R. I., 1942.
  • [2] Stefan Bergman, A formula for the stream function of certain flows, Proc. Nat. Acad. Sci. U. S. A. 29 (1943), 276–281. MR 0010079
  • [3] Stefan Bergman, On representation of stream functions of subsonic and supersonic flows of compressible fluids, J. Rational Mech. Anal. 4 (1955), 883–905. MR 0074206
  • [4] S. Bergman, J. G. Herriot & T. G. Kurtz, Numerical Calculation of Transonic Flow Patterns, Tech. Rep. No. CS 51, Computer Science Department, Stanford University, 1966.
  • [5] Lipman Bers, Mathematical aspects of subsonic and transonic gas dynamics, Surveys in Applied Mathematics, Vol. 3, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096477
  • [6] Lipman Bers and Abe Gelbart, On a class of differential equations in mechanics of continua, Quart. Appl. Math. 1 (1943), 168–188. MR 0008556
  • [7] Lipman Bers and Abe Gelbart, On a class of functions defined by partial differential equations, Trans. Amer. Math. Soc. 56 (1944), 67–93. MR 0010910, 10.1090/S0002-9947-1944-0010910-5
  • [8] S. A. Chapltgin, On Gas Jets, Scientific Memoirs, Moscow University MathematicsPhysics Section, 21, 1904, pp. 1-121; English transl., published by NACA TM 1063, 1044. MR 7, 495.
  • [9] G. H. Golub & L. B. Smith, Chebyshev Approximation of Continuous Functions by a Chebyshev's System of Functions, Tech. Rep. No. CS 72, Computer Science Dept., Stanford University, 1967.
  • [10] Richard von Mises, Mathematical theory of compressible fluid flow, Applied mathematics and mechanics. Vol. 3, Academic Press, Inc., New York, N.Y., 1958. MR 0094996
  • [11] P. Molenbroek, "Über einige Bewegungen eines Gases mit Annahme eines Geschwindigkeitspotentials," Arch. Math. Phys. (2), v. 9, 1890, pp. 157-195.
  • [12] E. Ya. Remez, General computation methods for Čebyšev approximation. Problems with real parameters entering linearly, Izdat. Akad. Nauk Ukrainsk. SSR. Kiev, 1957 (Russian). MR 0088788
  • [13] J. M. Stark, Application of Bergman’s integral operators to transonic flows, Internat. J. Non-Linear Mech. 1 (1966), 17–34 (English, with French, German and Russian summaries). MR 0230508
  • [14] J. M. Stark, Transonic Flow Patterns Generated by Bergman's Integral Operator, Report, Department of Mathematics, Stanford University, 1964.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 76.65

Retrieve articles in all journals with MSC: 76.65

Additional Information

Article copyright: © Copyright 1968 American Mathematical Society