Estimating optimum overrelaxation parameters
Authors:
L. A. Hageman and R. B. Kellogg
Journal:
Math. Comp. 22 (1968), 6068
MSC:
Primary 65.35
MathSciNet review:
0229371
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
George
E. Forsythe and Wolfgang
R. Wasow, Finitedifference methods for partial differential
equations, Applied Mathematics Series, John Wiley & Sons, Inc.,
New YorkLondon, 1960. MR 0130124
(23 #B3156)
 [2]
Richard
S. Varga, Matrix iterative analysis, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1962. MR 0158502
(28 #1725)
 [3]
B. A. Carre, "The determination of the optimum accelerating factor for successive overrelaxation," Comput. J., v. 4, 1961, pp. 7378.
 [4]
H.
E. Kulsrud, A practical technique for the determination of the
optimum relaxation factor of the successive overrelaxation method,
Comm. ACM 4 (1961), 184–187. MR 0143336
(26 #895)
 [5]
A.
K. Rigler, Estimation of the successive
overrelaxation factor, Math. Comp. 19 (1965), 302–307. MR 0181122
(31 #5351), http://dx.doi.org/10.1090/S00255718196501811227
 [6]
Eugene
L. Wachspress, Iterative solution of elliptic systems, and
applications to the neutron diffusion equations of reactor physics,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1966. MR 0234649
(38 #2965)
 [7]
G. H. Golub & R. S. Varga, "Chebyshev semiiterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II," Numer. Math., v. 3, 1961, pp. 147156, 157168. MR 26 #3207; MR 26 #3208.
 [8]
Donald
A. Flanders and George
Shortley, Numerical determination of fundamental modes, J.
Appl. Phys. 21 (1950), 1326–1332. MR 0040075
(12,640b)
 [9]
L. A. Hageman, The Chebyshev Polynomial Method of Iteration, WAPDTM537, 1967. (Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia.)
 [10]
Richard
S. Varga, Numerical methods for solving multidimensional
multigroup diffusion equations, Proc. Sympos. Appl. Math., Vol. XI,
American Mathematical Society, Providence, R.I., 1961,
pp. 164–189. MR 0127549
(23 #B595)
 [11]
G. J. Tee, "Eigenvectors of the successive overrelaxation process, and its combination with Chebyshev semiiteration," Comput. J., v. 6, 1963, pp. 250263.
 [12]
J.
K. Reid, A method for finding the optimum successive
overrelaxation parameter, Comput. J. 9 (1966),
200–204. MR 0195273
(33 #3475)
 [13]
L. A. Hageman & R. B. Kellogg. Estimating Optimum Acceleration Parameters for Use in the Successive Overrelaxation and the Chebyshev Polynomial Methods of Iteration, WAPDTM592, 1966. (Available from the Clearinghouse for Federal Scientific and Technical Information; see reference 9.)
 [1]
 G. E. Forsythe & W. R. Wasow, FiniteDifference Methods for Partial Differential Equations, Wiley, New York, 1960. MR 23 #B3156. MR 0130124 (23:B3156)
 [2]
 R. S. Varga, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
 [3]
 B. A. Carre, "The determination of the optimum accelerating factor for successive overrelaxation," Comput. J., v. 4, 1961, pp. 7378.
 [4]
 H. E. Kulsrud, "A practical technique for the determination of the optimum relaxation factor of the successive overrelaxation method," Comm. ACM, v. 4, 1961, pp. 184187. MR 26 #895. MR 0143336 (26:895)
 [5]
 A. K. Rigler, "Estimation of the successive overrelaxation factor," Math. Comp., v. 19, 1965, pp. 302307. MR 31 #5351. MR 0181122 (31:5351)
 [6]
 E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, PrenticeHall, Englewood Cliffs, N. J., 1966. MR 0234649 (38:2965)
 [7]
 G. H. Golub & R. S. Varga, "Chebyshev semiiterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II," Numer. Math., v. 3, 1961, pp. 147156, 157168. MR 26 #3207; MR 26 #3208.
 [8]
 D. A. Flanders & G. Shortley, "Numerical determination of fundamental modes," J. Appl. Phys., v. 21, 1950, pp. 13261332. MR 0040075 (12:640b)
 [9]
 L. A. Hageman, The Chebyshev Polynomial Method of Iteration, WAPDTM537, 1967. (Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia.)
 [10]
 R. S. Varga, Numerical Methods for Solving MultiDimensional Multigroup Diffusion Equations, Proc. Sympos. Appl. Math., Vol. 11, Amer. Math. Soc., Providence, R. I., 1961, pp. 164189. MR 23 #B595. MR 0127549 (23:B595)
 [11]
 G. J. Tee, "Eigenvectors of the successive overrelaxation process, and its combination with Chebyshev semiiteration," Comput. J., v. 6, 1963, pp. 250263.
 [12]
 J. K. Reid, "A method for finding the optimum successive overrelaxation parameter," Comput. J., v. 9, 1966, pp. 200204. MR 33 #3475. MR 0195273 (33:3475)
 [13]
 L. A. Hageman & R. B. Kellogg. Estimating Optimum Acceleration Parameters for Use in the Successive Overrelaxation and the Chebyshev Polynomial Methods of Iteration, WAPDTM592, 1966. (Available from the Clearinghouse for Federal Scientific and Technical Information; see reference 9.)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.35
Retrieve articles in all journals
with MSC:
65.35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196802293716
PII:
S 00255718(1968)02293716
Article copyright:
© Copyright 1968
American Mathematical Society
