Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Estimating optimum overrelaxation parameters


Authors: L. A. Hageman and R. B. Kellogg
Journal: Math. Comp. 22 (1968), 60-68
MSC: Primary 65.35
DOI: https://doi.org/10.1090/S0025-5718-1968-0229371-6
MathSciNet review: 0229371
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. E. Forsythe & W. R. Wasow, Finite-Difference Methods for Partial Differential Equations, Wiley, New York, 1960. MR 23 #B3156. MR 0130124 (23:B3156)
  • [2] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [3] B. A. Carre, "The determination of the optimum accelerating factor for successive overrelaxation," Comput. J., v. 4, 1961, pp. 73-78.
  • [4] H. E. Kulsrud, "A practical technique for the determination of the optimum relaxation factor of the successive over-relaxation method," Comm. ACM, v. 4, 1961, pp. 184-187. MR 26 #895. MR 0143336 (26:895)
  • [5] A. K. Rigler, "Estimation of the successive over-relaxation factor," Math. Comp., v. 19, 1965, pp. 302-307. MR 31 #5351. MR 0181122 (31:5351)
  • [6] E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR 0234649 (38:2965)
  • [7] G. H. Golub & R. S. Varga, "Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II," Numer. Math., v. 3, 1961, pp. 147-156, 157-168. MR 26 #3207; MR 26 #3208.
  • [8] D. A. Flanders & G. Shortley, "Numerical determination of fundamental modes," J. Appl. Phys., v. 21, 1950, pp. 1326-1332. MR 0040075 (12:640b)
  • [9] L. A. Hageman, The Chebyshev Polynomial Method of Iteration, WAPD-TM-537, 1967. (Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia.)
  • [10] R. S. Varga, Numerical Methods for Solving Multi-Dimensional Multigroup Diffusion Equations, Proc. Sympos. Appl. Math., Vol. 11, Amer. Math. Soc., Providence, R. I., 1961, pp. 164-189. MR 23 #B595. MR 0127549 (23:B595)
  • [11] G. J. Tee, "Eigenvectors of the successive overrelaxation process, and its combination with Chebyshev semi-iteration," Comput. J., v. 6, 1963, pp. 250-263.
  • [12] J. K. Reid, "A method for finding the optimum successive overrelaxation parameter," Comput. J., v. 9, 1966, pp. 200-204. MR 33 #3475. MR 0195273 (33:3475)
  • [13] L. A. Hageman & R. B. Kellogg. Estimating Optimum Acceleration Parameters for Use in the Successive Overrelaxation and the Chebyshev Polynomial Methods of Iteration, WAPD-TM-592, 1966. (Available from the Clearinghouse for Federal Scientific and Technical Information; see reference 9.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.35

Retrieve articles in all journals with MSC: 65.35


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0229371-6
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society