Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Estimating optimum overrelaxation parameters


Authors: L. A. Hageman and R. B. Kellogg
Journal: Math. Comp. 22 (1968), 60-68
MSC: Primary 65.35
MathSciNet review: 0229371
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124 (23 #B3156)
  • [2] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502 (28 #1725)
  • [3] B. A. Carre, "The determination of the optimum accelerating factor for successive overrelaxation," Comput. J., v. 4, 1961, pp. 73-78.
  • [4] H. E. Kulsrud, A practical technique for the determination of the optimum relaxation factor of the successive over-relaxation method, Comm. ACM 4 (1961), 184–187. MR 0143336 (26 #895)
  • [5] A. K. Rigler, Estimation of the successive over-relaxation factor, Math. Comp. 19 (1965), 302–307. MR 0181122 (31 #5351), http://dx.doi.org/10.1090/S0025-5718-1965-0181122-7
  • [6] Eugene L. Wachspress, Iterative solution of elliptic systems, and applications to the neutron diffusion equations of reactor physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0234649 (38 #2965)
  • [7] G. H. Golub & R. S. Varga, "Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II," Numer. Math., v. 3, 1961, pp. 147-156, 157-168. MR 26 #3207; MR 26 #3208.
  • [8] Donald A. Flanders and George Shortley, Numerical determination of fundamental modes, J. Appl. Phys. 21 (1950), 1326–1332. MR 0040075 (12,640b)
  • [9] L. A. Hageman, The Chebyshev Polynomial Method of Iteration, WAPD-TM-537, 1967. (Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia.)
  • [10] Richard S. Varga, Numerical methods for solving multi-dimensional multi-group diffusion equations, Proc. Sympos. Appl. Math., Vol. XI, American Mathematical Society, Providence, R.I., 1961, pp. 164–189. MR 0127549 (23 #B595)
  • [11] G. J. Tee, "Eigenvectors of the successive overrelaxation process, and its combination with Chebyshev semi-iteration," Comput. J., v. 6, 1963, pp. 250-263.
  • [12] J. K. Reid, A method for finding the optimum successive over-relaxation parameter, Comput. J. 9 (1966), 200–204. MR 0195273 (33 #3475)
  • [13] L. A. Hageman & R. B. Kellogg. Estimating Optimum Acceleration Parameters for Use in the Successive Overrelaxation and the Chebyshev Polynomial Methods of Iteration, WAPD-TM-592, 1966. (Available from the Clearinghouse for Federal Scientific and Technical Information; see reference 9.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.35

Retrieve articles in all journals with MSC: 65.35


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1968-0229371-6
PII: S 0025-5718(1968)0229371-6
Article copyright: © Copyright 1968 American Mathematical Society