Error Bounds in Gaussian Integration of Functions of Low-Order Continuity

By Philip Rabinowitz

The standard error term in the Gaussian integration rule with \(N \) points involves the derivative of order \(2N \) of the integrand. This seems to indicate that such a rule is not efficient for integrating functions of low-order continuity, i.e. functions which have only a few derivatives in the entire interval of integration. However, Stroud and Secrest [3] have shown that Gaussian integration is efficient even in these cases. By applying Peano's theorem [1, p. 109] to functions of low-order continuity, they have tabulated error coefficients \(e_{m,N} \) by which the error in integrating such functions can be bounded, provided that a bound \(M_m \) exists for the derivative of order \(m \) of the integrand. In this case,

\[
|E_N(f)| = \left| \int_{-1}^{1} f(x) dx - \sum_{i=1}^{N} w_if(x_i) \right| \leq e_{m,N}M_m
\]

where \(|f^{(m)}(x)| \leq M_m \) in \(I = [-1, 1] \). In the present paper, we use results from the theory of Chebyshev expansions to compute a different set of error coefficients \(d_{m,N} \) which provide sharper bounds on \(E_N(f) \) in some cases.

Let \(f(x) \) be continuous and of bounded variation in \(I \). Then there is an expansion of the form

\[
f(x) = \frac{1}{2}a_0 + a_1T_1(x) + a_2T_2(x) + \cdots + \sum_{n=0}^{\infty} a_nT_n(x)
\]

which is uniformly convergent throughout \(I \). Here, \(T_n(x) \) are the Chebyshev polynomials of the first kind and

\[
a_n = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x)T_n(x)}{(1 - x^2)^{1/2}} dx = \frac{2}{\pi} \int_{0}^{\pi} g(\theta) \cos n\theta d\theta
\]

where \(g(\theta) = f(\cos \theta) \). By integrating the right-hand integral in (3) successively by parts and applying the second mean-value theorem of the integral calculus after each integration, we get the following results of interest to us. These results as well as additional ones appear in Elliott [2].

A. Define \(F_1(x) = (1 - x^2)^{1/2}f'(x) \); if \(F_1(x) \) is of bounded variation in \(I \) with \(|F_1(x)| \leq P_1 \) and if \(C_1 \) is the number of intervals in \(I \), in each of which \(F_1(x) \) is monotonic, then

\[
|a_n| \leq 4C_1P_1/\pi n^2 \quad \text{for} \quad n \geq 1.
\]

B. Define \(F_2(x) = (1 - x^2)f''(x) - xf'(x) \); if \(F_2(x) \) is of bounded variation in \(I \) with \(|F_2(x)| \leq P_2 \), if \(C_2 \) is the number of intervals in \(I \), in each of which \(F_2(x) \) is monotonic, and if \(\lim_{x \to \pm 1} F_1(x) = 0 \), then

Received July 10, 1967.

431
Let us now apply the operator E_N to (2). We get

$$E_N(f) = E_N\left(\sum_{n=0}^{\infty} a_n T_n(x) \right) = \sum_{n=0}^{\infty} a_n E_N(T_n) = \sum_{n=2N}^{\infty} a_n E_N(T_n)$$

since $E_N(T_n) = 0$ for $n < 2N$. If now $f(x)$ satisfies the conditions A, we get

$$|E_N(f)| \leq \frac{4C_1P_1}{\pi} \sum_{n=2N}^{\infty} \frac{|E_N(T_n)|}{n^2} = d_{1,N}C_1P_1$$

where

$$d_{1,N} = \frac{4}{\pi} \sum_{n=2N}^{\infty} \frac{|E_N(T_n)|}{n^2}$$

converges since $|E_N(T_n)| \leq 2 + 2/(n^2 - 1)$. This bound holds since $|T_n(x)| \leq 1$ in I and $\sum_{i=1}^{N} w_i = 2$ implying that $\left| \sum_{i=1}^{N} w_i T_n(x_i) \right| \leq 2$ and since $\int_{-1}^{1} T_n(x)dx = 2/(n^2 - 1)$. If $f(x)$ satisfies conditions B, we get similarly

$$|E_N(f)| \leq d_{2,N}C_2P_2$$

where

$$d_{2,N} = \frac{4}{\pi} \sum_{n=2N}^{\infty} \frac{|E_N(T_n)|}{n^2}$$

In Table 1, values of $e_{i,N}$ and $d_{i,N}$ are given for $i = 1, 2$ and $N = 4(3)16$. We see that $d_{i,N}/e_{i,N} < 1$ and that this ratio decreases with increasing N. Hence, in cases where C_iP_i is not too much greater than M_i, (7) and (9) will provide sharper error bounds than (1), especially for large N.

Table 1

<table>
<thead>
<tr>
<th>N</th>
<th>$e_{1,N}$</th>
<th>$d_{1,N}$</th>
<th>$e_{2,N}$</th>
<th>$d_{2,N}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.76(-1)</td>
<td>8.64(-2)</td>
<td>2.19(-2)</td>
<td>7.07(-3)</td>
</tr>
<tr>
<td>7</td>
<td>1.65(-1)</td>
<td>3.13(-2)</td>
<td>7.63(-3)</td>
<td>1.50(-3)</td>
</tr>
<tr>
<td>10</td>
<td>1.18(-1)</td>
<td>1.60(-2)</td>
<td>3.86(-3)</td>
<td>5.40(-4)</td>
</tr>
<tr>
<td>13</td>
<td>9.15(-2)</td>
<td>9.68(-3)</td>
<td>2.33(-3)</td>
<td>2.54(-4)</td>
</tr>
<tr>
<td>16</td>
<td>7.48(-2)</td>
<td>6.48(-3)</td>
<td>1.56(-3)</td>
<td>1.39(-4)</td>
</tr>
</tbody>
</table>

Examples. 1. $f(x) = |x|^{13}$. In this case, $f''(x)$ is unbounded in I so that using (1), we find $E_N(f) \leq e_{1,N}M_1$. Taking $N = 16$ and $M_1 = 4/3$, we find $E_{16}(f) \leq 1.0(-1)$. Using (7) with $C_1 = 3$ and $P_1 = .92$, we find $E_{16}(f) \leq 1.8(-2)$. The actual error is $1.0(-3)$. For $N = 4$, the figures are $3.7(-1), 2.4(-1)$, and $2.2(-2)$, respectively.

2. $f(x) = |x|^{5/8}$. In this case, $E_N(f) \leq e_{2,N}M_2$. With $N = 16$ and $M_2 = 40/9$, we find $E_{16}(f) \leq 7.0(-3)$. Using (9) with $C_2 = 3$ and $P_2 = 8/3$, we find $E_{16}(f) \leq 1.2(-3)$. The actual error is $3.5(-5)$. For $N = 4$, the figures are $9.8(-2), 5.7(-2)$ and $5.1(-3)$, respectively.
3. \(f(x) = (x + 1)^5 \). In this case also, \(f''(x) \) is unbounded in \(I \) so that \(E_N(f) \leq e_{1,N}M_1 \). With \(N = 16 \) and \(M_1 = (5/4)2^{1/4} \) we find \(E_{16}(f) \leq 1.1(-4) \). However, \(F_2(x) \) satisfies conditions \(B \) so that we can use (9). With \(C_2 = 2 \) and \(P_2 = (5/4)2^{1/4} \), we find \(E_{16}(f) \leq 4.2(-4) \). The actual error is \(8.9(-7) \).

Remarks. 1. This method is not restricted to Gaussian rules but is applicable to any integration rule defined over \(I \) which integrates constants exactly. This includes the Lobatto, Radau, Newton-Cotes, Romberg and Gauss-Jacobi rules.

2. This method can be extended to cases where higher derivatives exist. Thus, Elliott [2] gives the estimate \(|a_n| \leq 4C_3P_3/\pi n^4 \) where

\[
F_3(x) = (1 - x^2)^{1/2}[(1 - x^2)f'''(x) - 3xf''(x) - f'(x)]
\]
satisfies conditions similar to \(B \). However, the expressions for \(F_i \) become very complicated with increasing \(i \) and it is not worth the effort to find \(C_i \) and \(P_i \).

3. Elliott also gives the estimate \(|a_n| \leq 4C_3P_3/\pi n^4 \) where \(F_0(x) \equiv f(x) \). However, it is probably not possible to use this method for functions with unbounded first derivatives. This is so since \(\sum_{n=2N}^{\infty} |E_N(T_n)|/n \) probably diverges. This assumption is based on the fact that for Gauss-Chebyshev integration, we can prove divergence. The Gauss-Chebyshev integration rule is of the form

\[
\int_{-1}^{1} \frac{f(x)}{(1 - x^2)^{1/2}} dx = \frac{\pi}{N} \sum_{i=1}^{N} f(x_i) + E_N(f)
\]

where

\[
x_i = \cos \frac{\pi(i - 1)}{2N} \pi, \quad i = 1, \ldots, N.
\]

Since \(\int_{-1}^{1} T_n(x)/(1 - x^2)^{1/2} dx = 0 \) for \(n \geq 1 \), it follows that \(E_N(T_n) = (\pi/N) \sum_{i=1}^{N} T_n(x_i) \). Since \(T_n(x) = \cos (n \arccos x) \), we have \(T_n(x_i) = \cos ((2i - 1)n\pi/2N) \). Hence, for \(n = 2KN, \quad K = 1, 2, \ldots, E_N(T_n) = -\pi \), from which it follows that \(\sum_{n=2N}^{\infty} |E_N(T_n)|/n \) diverges.

Conclusions. As Examples 1 and 2 indicate, error bounds (1), (7) and (9) may give rather good bounds on the integration error. On the other hand, Example 3 shows that the bounds may overshoot the actual error by many orders of magnitude. Nevertheless, in the absence of further information, they are the best available for functions of low-order continuity. Since \(|F_1(x)| \leq |f''(x)| \) in \(I \), (7) will be better than (1) for small values of \(C_1 \). The situation with \(F_2 \) is more complicated but usually \(P_2 \) will be of the same order of magnitude as \(M_2 \) so that (9) will give a better bound than (1) for small values of \(C_2 \). In both cases, the critical value of \(C_i \) increases with \(N \). In cases when the singularity is at an endpoint of \(I \), our method may be very advantageous. As Example 3 shows, we can use (9) even when \(f''(x) \) is unbounded. More generally, \(f^{(j)}(x) \) may be unbounded while \(F_{j+k}(x) \) is well behaved, \(k = 0, 1, \ldots \). But as mentioned above, the work involved in calculating \(C_{j+k} \) and \(P_{j+k} \) becomes prohibitive. On the other hand, (1) has the advantage of simplicity especially when compared with (9), and, of course, (1) is preferable when \(C_i \) is large. Hence there is room for both types of error bound.
An Explicit Sixth-Order Runge-Kutta Formula

By H. A. Luther

1. Introduction. The system of ordinary differential equations considered has the form

\[\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0. \]

Here \(y(x) \) and \(f(x, y) \) are vector-valued functions

\[y(x) = (y_1(x), y_2(x), \cdots, y_m(x)), \]
\[f(x, y) = (f_1(x, y), f_2(x, y), \cdots, f_m(x, y)), \]

so that we are dealing with \(m \) simultaneous first-order equations.

For the fifth-order case, explicit Runge-Kutta formulas have been found whose remainder, while of order six when \(y \) is present in (1), does become of order seven when \(f \) is a function of \(x \) alone \([3],[4]\). This is due to the use of six functional substitutions, a necessary feature when \(y \) occurs nontrivially \([1]\).

A family of explicit sixth-order formulas has been described \([1]\). In this family is the formula given in the next section. Its remainder, while of order seven when \(y \) is present in (1), is of order eight when \(f \) is a function of \(x \) alone. Here again the possibility arises because seven functional substitutions are used, rather than six. Once more, this is a necessity \([2]\).

For selected equations (those not strongly dependent on \(y \)) such formulas seem to lead to some increase in accuracy.

2. Presentation of the Formula. For the interval \([x_n, x_n + h]\), Lobatto quadrature points leading to a remainder of order eight are

\[x_n, \quad x_n + h/2, \quad x_n + (7 - (21)^{1/2})h/14, \quad x_n + (7 + (21)^{1/2})h/14, \quad x_n + h. \]

A set of Runge-Kutta formulas related thereto is given below. They can be verified by substitution in the relations given by Butcher \([1]\).

Expressed in a usual form they are

Received December 28, 1966. Revised July 31, 1967.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use