Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Construction of Gauss-Christoffel quadrature formulas


Author: Walter Gautschi
Journal: Math. Comp. 22 (1968), 251-270
MSC: Primary 65.55
MathSciNet review: 0228171
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Donald G. Anderson, Gaussian quadrature formulae for ∫₀¹-𝑙𝑛(𝑥)𝑓(𝑥)𝑑𝑥, Math. Comp. 19 (1965), 477–481. MR 0178569, 10.1090/S0025-5718-1965-0178569-1
  • [2] S. Chandrasekhar, Radiative Transfer, Oxford University Press, 1950. MR 0042603
  • [3] E. B. Christoffel, "Sur une classe particulière de fonctions entières et de fractions continues," Ann. Mat. Pura Appl., (2), v. 8, 1877, pp. 1-10.
  • [4] Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1963. MR 0157156
  • [5] Philip J. Davis and Philip Rabinowitz, Ignoring the singularity in approximate integration, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 367–383. MR 0195256
  • [6] L. Fejér, "Mechanische Quadraturen mit positiven Cotesschen Zahlen," Math. Z., v. 37, 1933, pp. 287-309.
  • [7] C. F. Gauss, "Methodus nova integralium valores per approximationem inveniendi," Comment. Soc. Regiae Sci. Gottingensis Recentiores, v. 3, 1816; Werke, Vol. 3, pp. 163-196.
  • [8] Walter Gautschi, On inverses of Vandermonde and confluent Vandermonde matrices. II, Numer. Math. 5 (1963), 425–430. MR 0164437
  • [9] Walter Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967), 357–362. MR 0218014
  • [10] W. Gautschi, "Algorithm, Gaussian quadrature formulas," Comm. ACM. (To appear.)
  • [11] G. H. Golub & J. H. Welsch, Calculation of Gauss Quadrature Rules, Comput. Sci. Dept. Tech. Rep. No. CS 81, Stanford University, Calif., 1967.
  • [12] W. Gröbner, "Orthogonale Polynomsysteme die gleichzeitig mit $ f(x)$ auch deren Ableitung $ f'(x)$ approximieren," Funktionalanalysis, Approximationstheorie, Numerische Mathematik, edited by L. Collatz, G. Meinardus, and H. Unger, Birkhäuser, Basel, 1967, pp. 24-32.
  • [13] Bernard R. Kripke, Best approximation with respect to nearby norms, Numer. Math. 6 (1964), 103–105. MR 0164184
  • [14] L. G. Kruglikova and V. I. Krylov, A numerical Fourier transform, Dokl. Akad. Nauk BSSR 5 (1961), 279–283 (Russian). MR 0143327
  • [15] V. I. Krylov and L. T. Šul′gina, Spravochnaya kniga po chislennomu integrirovaniyu, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0213014
  • [16] Philip Rabinowitz, Gaussian integration in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967), 191–201. MR 0213016
  • [17] John R. Rice, A theory of condition, SIAM J. Numer. Anal. 3 (1966), 287–310. MR 0211576
  • [18] J. R. Rice & S. Rosen, "NAPSS--a numerical analysis problem solving system," Proc. ACM 21st Natl. Conf., Los Angeles, Calif. (August 1966), Thompson, Washington, D. C., 1966, pp. 51-56.
  • [19] H. Rutishauser, "On a modification of the $ QD$-algorithm with Graeffe-type convergence," Proc. IFIP Congress 62, pp. 93-96, North-Holland, Amsterdam, 1963.
  • [20] T. J. Stieltjes, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. École Norm. Sup. (3) 1 (1884), 409–426 (French). MR 1508747
  • [21] A. H. Stroud and Don Secrest, Gaussian quadrature formulas, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0202312
  • [22] Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. MR 0106295
  • [23] John Todd, The condition of the finite segments of the Hilbert matrix, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 109–116. MR 0068304
  • [24] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
  • [25] Ion Zamfirescu, An extension of Gauss’ method for the calculation of improper integrals, Acad. R. P. Rom\cflexıne Stud. Cerc. Mat. 14 (1963), 615–631 (Romanian, with Russian and French summaries). MR 0184434

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.55

Retrieve articles in all journals with MSC: 65.55


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0228171-0
Article copyright: © Copyright 1968 American Mathematical Society