Simplified calculation of for positive arguments, and a short table of

Authors:
Robert F. Tooper and John Mark

Journal:
Math. Comp. **22** (1968), 448-449

DOI:
https://doi.org/10.1090/S0025-5718-68-99872-4

Full-text PDF

References | Additional Information

**[1]**C. W. Clenshaw,*Chebyshev Series for Mathematical Functions*, National Physical Laboratory Mathematical Tables, Vol. 5, H. M. S. O., London, 1962, p. 29. MR**26**#362.**[2]**C. W. Clenshaw, G. F. Miller, and M. Woodger,*Algorithms for special functions. I*, Numer. Math.**4**(1962/1963), 403–419. MR**0154397**, https://doi.org/10.1007/BF01386339**[3]**W. J. Cody & J. Stoer, "Rational Chebyshev approximation using interpolation,"*Numer. Math.*, v. 9, 1966, pp. 177-188.**[4]**P. J. Davis & I. Polonsky, "Numerical interpolation, differentiation and integration,"*Handbook of Mathematical Functions*, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards Appl. Math. Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, p. 917.**[5]**Frank E. Harris,*Tables of the exponential integral 𝐸𝑖(𝑥)*, Math. Tables Aids Comput.**11**(1957), 9–16. MR**0088069**, https://doi.org/10.1090/S0025-5718-1957-0088069-0**[6]**Masao Kotani, Ayao Amemiya, Eiichi Ishiguro, and Tôsaku Kimura,*Table of molecular integrals*, Maruzen Co., Ltd., Tokyo, 1955. MR**0087231****[7]**James Miller and R. P. Hurst,*Simplified calculation of the exponential integral*, Math. Tables Aids Comput.**12**(1958), 187–193. MR**0104348**, https://doi.org/10.1090/S0025-5718-1958-0104348-3**[8]**Anthony Ralston,*A first course in numerical analysis*, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR**0191070****[9]**D. van Z. Wadsworth, "Improved asymptotic expansion for the exponential integral with positive argument,"*Math. Comp.*, v. 19, 1965, pp. 327-328.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-68-99872-4

Article copyright:
© Copyright 1968
American Mathematical Society