Simplified calculation of for positive arguments, and a short table of

Authors:
Robert F. Tooper and John Mark

Journal:
Math. Comp. **22** (1968), 448-449

DOI:
https://doi.org/10.1090/S0025-5718-68-99872-4

Full-text PDF

References | Additional Information

**[1]**C. W. Clenshaw,*Chebyshev Series for Mathematical Functions*, National Physical Laboratory Mathematical Tables, Vol. 5, H. M. S. O., London, 1962, p. 29. MR**26**#362.**[2]**C. W. Clenshaw, G. F. Miller & M. Woodger, "Algorithms for special functions. I,"*Numer. Math.*, v. 4, 1963, pp. 403-419. MR**27**#4346. MR**0154397 (27:4346)****[3]**W. J. Cody & J. Stoer, "Rational Chebyshev approximation using interpolation,"*Numer. Math.*, v. 9, 1966, pp. 177-188.**[4]**P. J. Davis & I. Polonsky, "Numerical interpolation, differentiation and integration,"*Handbook of Mathematical Functions*, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards Appl. Math. Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, p. 917.**[5]**F. E. Harris, "Tables of the exponential integral ,"*MTAC*, v. 11, 1957, pp. 9-16. MR**19**, 464. MR**0088069 (19:464b)****[6]**M. Kotani, A. Amemiya, E. Ishiguro & T. Kimura,*Table of Molecular Integrals*, Maruzen, Tokyo, 1955. MR**19**, 324. MR**0087231 (19:324f)****[7]**J. Miller & R. P. Hurst, "Simplified calculation of the exponential integral,"*MTAC*, v. 12, 1958, pp. 187-193. MR**21**#3103. MR**0104348 (21:3103)****[8]**A. Ralston,*A First Course in Numerical Analysis*, McGraw-Hill, New York, 1965, pp. 301-306. MR**32**#8479. MR**0191070 (32:8479)****[9]**D. van Z. Wadsworth, "Improved asymptotic expansion for the exponential integral with positive argument,"*Math. Comp.*, v. 19, 1965, pp. 327-328.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-68-99872-4

Article copyright:
© Copyright 1968
American Mathematical Society