Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The evaluation of a class of functions defined by an integral


Author: D. B. Hunter
Journal: Math. Comp. 22 (1968), 440-444
DOI: https://doi.org/10.1090/S0025-5718-68-99874-8
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1966.
  • [2] H. E. Fettis, "Numerical calculation of certain definite integrals by Poisson's summation formula," M TAC, v. 9, 1955, pp. 85-17, 302. MR 0072546 (17:302f)
  • [3] E. T. Goodwin, "The evaluation of integrals of the form $ \int_{ - \infty }^\infty {e - {x^2}f(x)dx} $," Proc. Cambridge Philos. Soc., v. 45, 1949, pp. 241-245. MR 10, 575. MR 0029281 (10:575f)
  • [4] D. B. Hunter, "The calculation of certain Bessel functions," Math. Comp., v. 18, 1964, pp. 123-128. MR 28 #1330. MR 0158104 (28:1330)
  • [5] Y. L. Luke, "Simple formulas for the evaluation of some higher transcendental functions," J. Math. Phys., v. 34, 1956, pp. 298-307. MR 17, 1138. MR 0078047 (17:1138e)
  • [6] Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962. MR 25 #5198. MR 0141801 (25:5198)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-68-99874-8
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society