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An Explicit Sixth-Order Runge-Kutta Formula

By H. A. Luther

1. Introduction. The system of ordinary differential equations considered has
the form

(1) dy/dx = f(x,y),  y@o) = yo.’
Here y(z) and f(z, y) are vector-valued functions
y(@) = @), 12(@), - -, ym(@)) ,
f(xi y) = (fl(x, y); fz(il}, y); °c "fm(x; y)) )

so that we are dealing with m simultaneous first-order equations.

For the fifth-order case, explicit Runge-Kutta formulas have been found whose
remainder, while of order six when y is present in (1), does become of order seven
when f is a function of z alone [3], [4]. This is due to the use of six functional sub-
stitutions, a necessary feature when y occurs nontrivially [1].

A family of explicit sixth-order formulas has been described [1]. In this family
is the formula given in the next section. Its remainder, while of order seven when
y is present in (1), is of order eight when f is a function of z alone. Here again the
possibility arises because seven functional substitutions are used, rather than six.
Once more, this is a necessity [2].

For selected equations (those not strongly dependent on y) such formulas seem
to lead to some increase in accuracy.

2. Presentation of the Formula. For the interval [z,, z, + h], Lobatto quad-
rature points leading to a remainder of order eight are
Ty et h/2, -t (T — QDUDR/14, 4+ (T4 QDIR/14, a2, + ke

A set of Runge-Kutta formulas related thereto is given below. They can be verified
by substitution in the relations given by Butcher [1].
Expressed in a usual form they are
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Yar1 = Yu + {91 + 64k; + 49ks + 49ks + 9%7}/180
ky = hf(xn; yn)
ke = hf(zn + vh, yu + vk1)
ks = hf(xa + 1/2, yo + {(4v — Dk1 + k2}/(8v))
ks = hf(xa + 2h/3, yo + {(10v — 2)k1 + 2Kz + 8vks}/(27v))
@) ks = hf(z. + (7 + D'™A/14, yu + {—(77v — 56] + [17v — 8](21)' ?)k,
— 8(7 + 1)Y™)ky + 48(7 + (21)12)pks
— 321 + (R1)12)vk,}/(3920))
ke = hf(za + (7 — (21)'*)h/14, yut { —5([287v — 56] — [59» — 8](21)!2)k,
— 40(7 — (21)'?)ks + 320(21) ks 4+ 3(21 — 121(21)12)vk,
+ 392(6 — (21)'2)vks}/(1960))
ki = hf(za + h, yu + {15([30v — 8] — [7»(21)*2])k1 + 120k
— 40(5 + 7(21) ?)vks + 63(2 + 3(21)12) vk,
— 14(49 — 921 ?)wks + 70(7 + (21)12)wks}/(180v)).
If desired, a companion formula can be found by replacing (21)'2 throughout with
—(21)12. The parameter » may have any value other than zero.

3. A Choice of Parameter. In some senses, a “best”’ formula is one for which
each coefficient of k; in expressions such as

J@n 4 h/2, yn + {(4v — D1 + k2}/(89))
is positive or zero. If this is impossible, we may seek to minimize the sum of the
absolute values of the coefficients. To establish a figure of merit, this sum should
be divided by the weight 1/2 in x, 4+ h/2. In this connection see, for example,
[5, p. 146]. The resulting expression for the above, assuming » > 0, is
/() + |1 — 1/(4)] .
This is clearly nonincreasing, and is a minimum of 1 for » = 1/4.

The other components of (2) behave in like manner except for that involving
k4, which is of the form a/v + b, where a and b are positive constants. Except for
this component, the minimum is achieved for all if v = 4(55 + 9(21)!2)/331 > 1.

If the same tactics are applied to the formula resulting when —(21)!2 is used
rather than (21)'”2, it develops that all components are minimized if » = 1/4 ex-
cept that pertaining to ks, which is of the form a/v + b, @ and b positive.*

To determine whether to use the formula pertaining to (21)!/2, as in (2), or that
formed therefrom by replacing (21)!"2 by —(21)!’2, we need the actual minima. For
(21)'2 in the order ks, ks, k4, ks, ke, k1, they are

1,1, 1, 17/7, (232 + 33(21)'2)/35, 4/(3») + (526 + 259(21)12)/90 .
For —(21)'”2, in the same order, they are
1,1, 1, 4/(7v) + (55 + 3(21)'/2)/28, (41(21)*"2 — 13)/28, (130 + 63(21)!/2)/18 .

Since one is ideal, a comparison shows (the fundamental weights for y,,; are also
to be considered) that —(21)'2 is to be preferred, and that, if we desire 0 < » < 1,
the value of » should be one. The resulting k; formulas are

* The author is indebted to the referee for pointing out that the sign of the surd might be
used to advantage.
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kv = Rhf(Zn, Yn)
]CQ = hf(xn + h; Yn + kl)
ks = hf(xn + h/2) Ya + {3]91 + kZ}/S)
ks = hf(xn + 2R/3, yn + {8k1 + 2ks + 8ks}/27)
5 = hf(za + (7 — C1)R/14, y, + {3(3(2D)12 — N)ky — 8(7 — (21)'2)k,
+ 48(7 — (21)')k; — 3(21 — (21)72)k4}/392)
ke = hf(xa + (7 + (21)')h/14, y + {—5(231 + 51(21)* )k,
— 40(7 4+ (21)12)ky — 320(21)!72k;5 4 3(21 4 121(21)'2)k,
+ 392(6 + (21)'72)k;}/1960)
ki = hf(xn + b, yu + {15(22 + 7(21)*2)k1 + 120k,
+ 40(7(21)1"2 — 5)ks — 63(3(21)'72 — 2)k,4
— 14(49 + 9(21)!12) ks 4 70(7 — (21)'/2)ks}/180).
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