Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

Rational Chebyshev approximations for the exponential integral $ E\sb{1}\,(x)$


Authors: W. J. Cody and Henry C. Thacher
Journal: Math. Comp. 22 (1968), 641-649
MSC: Primary 65.25
MathSciNet review: 0226823
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Rational Chebyshev approximations are presented for the exponential integral $ {E_1}(x)$ in the intervals $ (0,1]$, $ [1,4]$, and $ [4,\infty )$ with maximal relative errors ranging down to $ {10^{ - 21}}$. $ 25S$ coefficients are also given for a continued-fraction expansion for small $ X$.


References [Enhancements On Off] (What's this?)

  • [1] Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun. Third printing, with corrections. National Bureau of Standards Applied Mathematics Series, vol. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965. MR 0177136 (31 #1400)
  • [2] E. E. Allen, ``Note 169,'' MTAC, v. 8, 1954, p. 240.
  • [3] Cecil Hastings Jr., Approximations for digital computers, Princeton University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and James P. Wong, Jr. MR 0068915 (16,963e)
  • [4] C. Hastings, Jr., ``Note 143,'' MTAC, v. 7, 1953, p. 68.
  • [5] C. W. Clenshaw, Chebyshev Series for Mathematical Functions, National Physical Laboratorv Math. Tables, Vol. 5, Department of Scientific and Industrial Research, H.M.S.O., London, 1962. MR 26 #362.
  • [6] W. Fraser & J. F. Hart, ``On the computation of rational approximations to continuous functions,'' Comm. ACM, v. 5, 1962, pp. 401-403.
  • [7] W. J. Cody & J. Stoer, ``Rational Chebyshev approximations using interpolation,'' Numer. Math., v. 9, 1966, pp. 177-188.
  • [8] Peter Henrici, Some applications of the quotient-difference algorithm, Proc. Sympos. Appl. Math., Vol. XV, Amer. Math. Soc., Providence, R.I., 1963, pp. 159–183. MR 0159415 (28 #2632)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1968-0226823-X
PII: S 0025-5718(1968)0226823-X
Article copyright: © Copyright 1968 American Mathematical Society