Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical stability of a one-evaluation predictor-corrector algorithm for numerical solution of ordinary differential equations


Authors: R. W. Klopfenstein and R. S. Millman
Journal: Math. Comp. 22 (1968), 557-564
MSC: Primary 65.61
DOI: https://doi.org/10.1090/S0025-5718-1968-0226865-4
MathSciNet review: 0226865
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. E. Chase, ``Stability properties of predictor-corrector methods for ordinary differential equations,'' J. Assoc. Comput. Mach., v. 9, 1962, pp. 457-468. MR 29 #738. MR 0163436 (29:738)
  • [2] R. R. Brown, J. D. Riley & M. M. Bennett, ``Stability properties of Adams-Moulton type methods,'' Math. Comp., v. 19, 1965, pp. 90-96. MR 31 #2829. MR 0178572 (31:2829)
  • [3] F. T. Krogh, ``Predictor-corrector methods of high order with improved stability characteristics,'' J. Assoc. Comput. Mach., v. 13, 1966, pp. 374-385. MR 33 #5127. MR 0196943 (33:5127)
  • [4] R. L. Crane & R. W. Klopfenstein, ``A predictor-corrector algorithm with an increased range of absolute stability,'' J. Assoc. Comput. Mach., v. 12, 1965, pp. 227-241. MR 31 #6378. MR 0182155 (31:6378)
  • [5] M. A. Feldstein & H. J. Stetter, Simplified Predictor-Corrector Methods, Assoc. Comput. Mach. National Conference, 1963.
  • [6] T. E. Hull & A. L. Creemer, ``Efficiency of predictor-corrector procedures,'' J. Assoc. Comput. Mach., v. 10, 1963, pp. 291-301. MR 27 #4367. MR 0154419 (27:4367)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.61

Retrieve articles in all journals with MSC: 65.61


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0226865-4
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society