Finite-difference methods for nonlinear hyperbolic systems. II

Authors:
A. R. Gourlay and J. Ll. Morris

Journal:
Math. Comp. **22** (1968), 549-556

MSC:
Primary 65.67

MathSciNet review:
0228201

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**G. Ye D'jakonov, ``Difference schemes with a disintegrating operator for multidimensional problems,''*U.S.S.R. Comput. Math. and Math. Phys.*, v. 4, 1963, pp. 581-607.**[2]**John Gary,*On certain finite difference schemes for hyperbolic systems*, Math. Comp.**18**(1964), 1–18. MR**0158553**, 10.1090/S0025-5718-1964-0158553-3**[3]**A. R. Gourlay and J. Ll. Morris,*Finite difference methods for nonlinear hyperbolic systems*, Math. Comp.**22**(1968), 28–39. MR**0223114**, 10.1090/S0025-5718-1968-0223114-8**[4]**Seymour V. Parter,*Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem*, Numer. Math.**4**(1962), 277–292. MR**0148232****[5]**R. D. Richtmyer & K. W. Morton,*Stability Studies for Finite Difference Equations*, N.Y.U. Courant Inst. Math. Sci. Res. Dep. N.Y.O.-1480-5, 1964.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.67

Retrieve articles in all journals with MSC: 65.67

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1968-0228201-6

Article copyright:
© Copyright 1968
American Mathematical Society