Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Solutions of the diophantine equation $ x\sp{2}-Dy\sp{4}=k$


Authors: Mohan Lal and James Dawe
Journal: Math. Comp. 22 (1968), 679-682
MSC: Primary 10.13
MathSciNet review: 0236107
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Wilhelm Ljunggren, Zur Theorie der Gleichung 𝑥²+1=𝐷𝑦⁴, Avh. Norske Vid. Akad. Oslo. I. 1942 (1942), no. 5, 27 (German). MR 0016375 (8,6f)
  • [2] W. Ljunggren, ``Einige Eigenschaften der Einheiten reel Quadratischer und rein-biquadratishen Zahlkorper,'' Skr. Norske Vid. Akad. Oslo I, v. 1936, no. 12.
  • [3] L. J. Mordell, The Diophantine equation 𝑦²=𝐷𝑥⁴+1, J. London Math. Soc. 39 (1964), 161–164. MR 0162761 (29 #65)
  • [4] W. Ljunggren, Some remarks on the diophantine equations 𝑥²-\cal𝐷𝑦⁴=1\ and 𝑥⁴-\cal𝐷𝑦²=1, J. London Math. Soc. 41 (1966), 542–544. MR 0197390 (33 #5555)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.13

Retrieve articles in all journals with MSC: 10.13


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1968-0236107-1
PII: S 0025-5718(1968)0236107-1
Article copyright: © Copyright 1968 American Mathematical Society