Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 22 (1968), 683-694
DOI: https://doi.org/10.1090/S0025-5718-68-99654-3
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Claude Berge, The Theory of Graphs and Its Applications, Methuen, London, 1962. MR 0132541 (24:A2381)
  • [2] J. C. C. McKinsey, An Introduction to the Theory of Games, McGraw-Hill, New York, 1952. MR 0050248 (14:300d)
  • [3] A. Kaupmann & R. Cruon, Dynamic Programming, Academic Press, New York, 1967.
  • [1] F. Ceschino & J. Kuntzmann, Problèmes Différentiels de Conditions Initiales, Dunod, Paris, 1963. MR 0159422 (28:2639)
  • [2] J. C. Butcher, ``Implicit Runge-Kutta processes,'' Math. Comp., v. 18, 1964, pp. 50-64. MR 0159424 (28:2641)
  • [3] J. C. Butcher, ``Integration processes based on Radau quadrature formulas,'' Math. Comp., v. 18, 1964, pp. 233-244. MR 0165693 (29:2973)
  • [4] J. C. Butcher, Tables of Coefficients for Implicit Runge-Kutta Processes, ms. of 9 sheets deposited in the UMT file [see Math. Comp., v. 19, 1965, p. 348, RMT 56].
  • [1] Chih-Bing Ling, ``Evaluation at half periods of Weierstrass' elliptic functions with double periods 1 and $ {e^{i\alpha }}$,'' Math.Comp., v. 19, 1965, pp. 658-661. MR 0192633 (33:858)
  • [1] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, Vol. I, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962, pp. 462-463. MR 0142796 (26:365a)
  • [2] T. Pearcey, Table of the Fresnel Integral to Six Decimal Places, Cambridge Univ. Press, Cambridge, 1957. (See MTAC, v. 11, 1957, pp. 210-211, RMT 87.) MR 0084206 (18:829e)
  • [3] O. L. Fleckner, ``A method for the computation of the Fresnel integrals and related functions,'' Math. Comp., v. 22, 1968, pp. 635-640. MR 0226824 (37:2411)
  • [1] H. S. Uhler, Exact Values of the First 200 Factorials, New Haven, 1944. (See MTAC, v. 1, 1943-1945, p. 312, RMT 158; p. 452, UMT 36.)
  • [2] H. S. Uhler, ``Twenty exact factorials between 304! and 401!", Proc. Nat. Acad. Sci. U. S. A., v. 34, 1948, pp. 407-412. (See MTAC, v. 3, 1948-1949, p. 355, RMT 579.) MR 0027593 (10:329d)
  • [3] H. S. Uhler, ``Nine exact factorials between 449! and 751!,'' Scripta Math., v. 21, 1955, pp. 138-145. MR 0074583 (17:610b)
  • [4] H. S. Uhler, ``Exact values of 996! and 1000!, with skeleton tables of antecedent constants,'' Scripta Math., v. 21, 1955, pp. 261-268. (See MTAC, v. 11, 1957, p. 22, RMT 1.) MR 0074583 (17:610b)
  • [5] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, Vol. I, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962, p. 47.
  • [6] M. Kraitchik, ``On the divisibility of factorials,'' Scripta Math., v. 14, 1948, pp. 24-26. (See MTAC, v. 3, 1948-1949, pp. 357-358, RMT 587.) MR 0025479 (10:12e)
  • [1] J. W. L. Glaisher, ``Tables of $ 1 \pm {2^{ - n}} \pm {3^{ - n}} \pm {4^{ - n}} + $ etc. and $ 1 + {3^{ - n}} + {5^{ - n}} + {7^{ - n}} + $ etc. to 32 places of decimals,'' Quart. J. Math., v. 45, 1914, pp. 141-158.
  • [2] H. T. Davis, Tables of the Mathematical Functions, Vol. II, Principia Press of Trinity University, San Antonio, Texas, 1963. MR 0158099 (28:1325b)
  • [3] R. Liénard, Tables Fondamentales à 50 Décimales des Sommes $ {S_n}$, $ {U_n}$, $ {\Sigma _n}$, Centre de Documentation Universitaire, Paris, 1948.
  • [4] Alden McLellan IV, Summing the Riemann Zeta Function, Preprint No. 35, Desert Research Institute, University of Nevada, Reno, May 1966.
  • [5] Modern Computing Methods, 2nd ed., Her Majesty's Stationery Office, London, 1961, p. 126. MR 0117862 (22:8636)
  • [6] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, Vol. I, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1962, p. 517.
  • [1] A. M. Andrew, Table of the Stirling Numbers of the Second Kind, Tech. Rep. No. 6, Electrical Engineering Research Laboratory, Engineering Experiment Station, University of Illinois, Urbana, Illinois, December 1965. (See Math. Comp., v. 21, 1967, pp. 117-118, RMT 3.)
  • [2] H. Gupta, ``Tables of distributions,'' Res. Bull. East Panjab Univ., No. 2, 1950, pp. 13-44. (See MTAC, v. 5, 1951, p. 71, RMT 859.) MR 0040795 (12:750d)
  • [1] Daniel Shanks & Larry P. Schmid, ``Variations on a theorem of Landau, Part I,'' Math. Comp., v. 20, 1966, pp. 551-569. See also [2] of this paper. MR 0210678 (35:1564)
  • [2] D. H. Lehmer, ``On a problem of StØrmer, Illinois J. Math., v. 8, 1964, pp. 57-79. Reviewed in RMT 67, Math. Comp., v. 18, 1964, p. 510. MR 0158849 (28:2072)
  • [1] Mohan Lal & James Dawe, ``Solutions of the Diophantine equation $ {x^2} - D{y^4} = k$,'' Math. Comp., v. 22, 1968, pp. 679-682. MR 0236107 (38:4405)
  • [2] RMT 89, Math. Comp., v. 20, 1966, pp. 620-621.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-68-99654-3
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society