Editorial Committee

EUGENE ISAACSON, Chairman, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Assistant to the Chairman: CHARLOTTE W. JOHN
C. W. CLENSHAW, Mathematics Division, National Physics Laboratory, Teddington, Middlesex, England
AVRON DOUGLIS, Department of Mathematics, University of Maryland, College Park, Maryland 20740
WALTER GAUTSCHI, Computer Sciences Department, Purdue University, Lafayette, Indiana 47907
GEORGE H. GOLUB, Computer Science Department, Stanford University, Stanford, California 94305
A. S. HOUSEHOLDER, Oak Ridge National Laboratory, Oak Ridge, Tennessee
HEINZ O. KREISS, Computer Science Department, University of Uppsala, Uppsala, Sturegatan 4, Sweden
PETER D. LAX, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Y. L. LUKE, Midwest Research Institute, Kansas City, Missouri 64110
JAMES M. ORTEGA, Computer Science Center, University of Maryland, College Park, Maryland 20740
DANIEL SHANKS, Naval Ship Research and Development Center, Washington, D. C. 20007
J. W. WRENCH, Jr., Naval Ship Research and Development Center, Washington, D. C. 20007

Information for Subscribers

The journal is published quarterly in one volume per year, with issues numbered serially since Volume 1, Number 1. The subscription price is $16.00. All back volumes are available. For Volumes 1–22 (1943–1968), prices are $20.00 per volume and $6.00 per issue.

Unpublished Mathematical Tables

The editorial office of the journal maintains a repository of Unpublished Mathematical Tables (UMT). When a table is deposited in the UMT repository a brief summary of its contents is published in the section Reviews and Descriptions of Tables and Books. Upon request, the chairman of the editorial committee will supply copies of any table for a nominal cost.

Subscriptions, address changes, business communications and payments should be sent to:

AMERICAN MATHEMATICAL SOCIETY
P. O. Box 6248
Providence, Rhode Island 02904

Copyright © 1968. American Mathematical Society
Composed and printed by The Lane Press Inc., Burlington, Vermont, U.S.A.
Second-class postage paid at Providence, Rhode Island and at additional mailing offices.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Difference Methods for the Computation of the “Poisson Kernel” of Elliptic Operators</td>
<td>Pierre Jamet</td>
<td>477</td>
</tr>
<tr>
<td>Monotone and Oscillation Matrices Applied to Finite Difference Approximations</td>
<td>Harvey S. Price</td>
<td>489</td>
</tr>
<tr>
<td>Evaluation of a Kernel Associated with Laminar Flow Tubular Catalytic Reactors</td>
<td>Chul-Hee Kim & R. E. Gilbert</td>
<td>517</td>
</tr>
<tr>
<td>On Difference Schemes for Hyperbolic Equations with Discontinuous Initial Values</td>
<td>Mats Y. T. Apelkrans</td>
<td>525</td>
</tr>
<tr>
<td>On the Resolvent of a Linear Operator Associated with a Well-Posed Cauchy Problem</td>
<td>John Miller</td>
<td>541</td>
</tr>
<tr>
<td>Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination</td>
<td>Erwin H. Bareiss</td>
<td>565</td>
</tr>
<tr>
<td>Experiments on Error Growth Associated with Some Linear Least-Squares Procedures</td>
<td>T. L. Jordan</td>
<td>579</td>
</tr>
<tr>
<td>Bivariate Interpolation of Potential Functions</td>
<td>F. D. Burgoyne</td>
<td>589</td>
</tr>
<tr>
<td>The Generalized G-Transform</td>
<td>H. L. Gray & T. A. Atchison</td>
<td>595</td>
</tr>
<tr>
<td>Eberlein Measure and Mechanical Quadrature Formulae. I: Basic Theory</td>
<td>V. L. N. Sarma</td>
<td>607</td>
</tr>
<tr>
<td>Concerning Two Series for the Gamma Function</td>
<td>John W. Wrench, Jr.</td>
<td>617</td>
</tr>
<tr>
<td>Approximations for Elliptic Integrals</td>
<td>Yudell L. Luke</td>
<td>627</td>
</tr>
<tr>
<td>A Method for the Computation of the Fresnel Integrals and Related Functions</td>
<td>Oscar L. Fleckner</td>
<td>635</td>
</tr>
<tr>
<td>Rational Chebyshev Approximations for the Exponential Integral $E_i(x)$</td>
<td>W. J. Cody & Henry C. Thacher, Jr.</td>
<td>641</td>
</tr>
<tr>
<td>Error Estimates for the Clenshaw-Curtis Quadrature. . . M. M. Chawla</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>Technical Notes and Short Papers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Bounds for Gauss-Chebyshev Quadrature . . . Franz Stetter</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>On a Generalization of the Midpoint Rule . . . Franz Stetter</td>
<td>661</td>
<td></td>
</tr>
<tr>
<td>On a Numerical Instability of Davidson-Like Methods</td>
<td>Yonathan Bard</td>
<td>665</td>
</tr>
<tr>
<td>Powers of a Matrix of Special Type . . . Gilbert C. Best</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>A Computer Study of the Orders of Finite Simple Groups</td>
<td>Edward L. Spitznagel, Jr. & Stephen A. Szgyenda</td>
<td>669</td>
</tr>
<tr>
<td>Polynomial System Satisfying a Special Functional Equation</td>
<td>A. M. Chak</td>
<td>673</td>
</tr>
<tr>
<td>More Amicable Numbers . . . Paul Bratley & John McKay</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>Solutions of the Diophantine Equation $x^2 - Dy^4 = k$</td>
<td>Mohan Lal & James Dawe</td>
<td>679</td>
</tr>
</tbody>
</table>
Reviews and Descriptions of Tables and Books

Beiler 74, Cruon 73, Draper & Smith 72, Fleckner 66, Glasmacher & Sommer 63, John 61, Kaufman 62, Lal 67, Lal & Dawe 75, Lal & Russell 68, Ling 65, MacLane & Birkhoff 76, McLellan 69, Mitrinović & Mitrinović 70, 71, Urabe 64

Table Errata

Abramowitz & Stegun 423, Erdélyi, Magnus, Oberhettinger & Tricomi 424, Selby 425, Kopal 426

Corrigenda

Shanks & Wrench, Shanks, Bergman & Chalmers, Mangad

Note

Reprints of Monographs by Sierpinski, Klein, Runge, Dickson
COMBINATORIAL IDENTITIES

By JOHN RIORDAN, Bell Telephone Laboratories. This book presents a fresh outlook on "old math" which explores, for the first time, the possibility of finding areas of order and coherence in combinatorial identities. In addition, it brings together the most extensive treatment of inverse relations available, surveys the number-theoretic aspects of partition polynomials and a collection of binomial coefficient identities arranged by relevance to mathematical topics.

ANALYSIS OF NUMERICAL METHODS

By EUGENE ISAACSON, and HERBERT BISHOP KELLER, both of New York University. This analysis of numerical methods yields an understanding of how they work and why they may fail. The authors analyze the most basic methods (by no means trying to be exhaustive) to help students devise and analyze other methods. Error estimates for truncation and roundoff, convergence proofs, and the notion of stability are carefully developed throughout.

COMPUTER APPROXIMATIONS

Edited by J. F. HART, University of Western Ontario. Provides methods and tabular data to assist in the design of function subroutines with emphasis on the construction of efficient subroutines for computer use. Many distinguished authors have contributed important chapters to this volume.

A HANDBOOK OF NUMERICAL MATRIX INVERSION AND SOLUTION OF LINEAR EQUATIONS

By JOAN R. WESTLAKE, Control Data Corporation, California. This handy reference book lists all known numerical methods for solving linear systems and inverting matrices with emphasis upon computer solution. It is unique in that it contains not only the methods which might appear in a book on numerical linear algebra, but also those iterative methods special to the field of elliptic partial differential equations.
INTRODUCTION TO STATISTICAL DATA PROCESSING

by Theodor D. Sterling and Seymour V. Pollack, both of Washington University, gives the student without a mathematical or engineering background the necessary understanding to make maximum use of available computing equipment. The text explores such capabilities of modern instrumentation as collection and display of data and use of high speed calculators. It includes a description and application of a number of new multivariate approaches to dealing with many variables. The authors emphasize the recently-developed heuristic techniques designed to deal with the "data-rich" situation.

Chapter IV covers the preparation of data for automatic processing. June 1968, 688 pp., $11.95

COMPUTER EVALUATION OF MATHEMATICAL FUNCTIONS

by C.T. Fike, Staff Member, IBM Systems Research Institute, covers the mathematical methods used to code computer programs for evaluating such mathematical functions as \(\sin x \) and \(\log x \). Written for the junior-senior undergraduate student in mathematics or engineering, or for the numerical analyst and computer programmer, this book brings together all the material essential to developing a computer function evaluating program. It features such unusual topics as Chebyshev series, continued fractions, asymptotic series, and evaluation of polynomials.

The author uses many examples and explanations to clarify this highly specialized material, previously available only in scientific journals. Problems at the end of each chapter require application of techniques discussed in that chapter; some require the use of a computer for solution. Most exercises are self-checking in some way so that solutions are not essential. October 1968, approx. 256 pp., $10.50

COMPUTERS AND COMMUNICATIONS—TOWARD A COMPUTER UTILITY

edited by Fred Gruenberger, Member of the Senior Staff, Informatics, Inc. Essentially a proceedings of the recent UCLA Symposium, "Computers and Communications—Toward a Computer Utility" this book brings together the thinking of the leaders who have shaped the Time Sharing Communication Computer Utility concept. Written by people with up-to-the minute experience, this book is designed for people in the field including programmers, systems designers, and the decision-makers who anticipate the installation of an in-house computer utility. Ideal for use in advanced university courses in computer science as well as in business and industrial training programs, this book explores: cost-effectiveness, monopoly, regulation, public welfare, privacy, and protection.

March 1968, 232 pp., $10.50

NEW BOOKS FROM PRENTICE-HALL

Box 903 • Englewood Cliffs • N. J. 07632

Line art: Graphic output of auxiliary computed equipment, courtesy of Bell Telephone Laboratories.
The book presents recent methods, hitherto found only in special articles, for the study in the large of problems of oscillation, i.e., of periodic solutions of systems of differential equations with periodic right-hand sides: namely, the method of guiding functions, methods for positive solutions with certain monotonic properties, and methods relating the stability of the solution to the convexity of the operator. Two appendices apply the methods to integral equations and to differential equations in Banach spaces.

This book deals with the analytic theory of elimination of nuisance parameters in the testing of statistical hypotheses and with unbiased estimates. Two of the eleven chapters discuss the theory of sheaves of ideals of functions of several complex variables as an analytic foundation of the theory of similar tests and unbiased estimates for incomplete exponential families.

The supplement deals with the same problems by means of the Hörmander-Malgrange theory of linear differential operators, which reduces optimization problems to purely analytic ones.

Please send orders to: American Mathematical Society, P. O. Box 6248, Providence, R. I. 02904
Information for Contributors

Manuscripts should be typewritten double-spaced in the format used by the journal. For journal abbreviations, see Mathematical Reviews, v. 28, Index. An author should submit the original and one copy of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in "Information for Contributors to Mathematics of Computation" and "Manual for Authors," both of which are available upon request from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to Eugene Isaacson, Chairman, Editorial Committee, Mathematics of Computation, New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012. Institutions sponsoring research reported in the journal are assessed page charges.

Beginning with the January 1969 issue of MATHEMATICS OF COMPUTATION, we will publish an author’s abstract at the head of each article. Authors should submit a brief and reasonably self-contained abstract with each paper.

Microcard Edition

Volumes 1–14 (1943–1960) are available on Microcards at $39.00 for the complete set and may be purchased from Microcard Editions, Inc., 901 26th Street N. W., Washington, D. C. 20037.
Monotone and Oscillation Matrices Applied to Finite Difference Approximations. Harvey S. Price 489
On the Resolvent of a Linear Operator Associated with a Well-Posed Cauchy Problem. John Miller 541
Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Erwin H. Bareiss 565
Experiments on Error Growth Associated with Some Linear Least-Squares Procedures. T. L. Jordan 579
Bivariate Interpolation of Potential Functions. F. D. Burgoyne 589
The Generalized G-Transform. H. L. Gray & T. A. Atchison 595
Eberlein Measure and Mechanical Quadrature Formulae. I: Basic Theory. V. L. N. Sarma 607
Concerning Two Series for the Gamma Function. John W. Wrench, Jr. 617
A Method for the Computation of the Fresnel Integrals and Related Functions. Oscar L. Fleckner 635
Rational Chebyshev Approximations for the Exponential Integral $E_1(x)$. W. J. Cody & Henry C. Thacher, Jr. 641
Error Estimates for the Clenshaw-Curtis Quadrature. M. M. Chawla 651

Error Bounds for Gauss-Chebyshev Quadrature. Franz Stetter 657
On a Generalization of the Midpoint Rule. Franz Stetter 661
On a Numerical Instability of Davidon-Like Methods. Yonathan Bard 665

Powers of a Matrix of Special Type. Gilbert C. Best 667
Polynomial System Satisfying a Special Functional Equation. A. M. Chak 673

More Amicable Numbers. Paul Bratley & John McKay 677
Solutions of the Diophantine Equation $x^2 - Dy^4 = k$. Mohan Lal & James Dawe 679