Primitive trinomials of high degree

Authors:
Eugene R. Rodemich and Howard Rumsey

Journal:
Math. Comp. **22** (1968), 863-865

MSC:
Primary 12.30

MathSciNet review:
0238813

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New primitive polynomials of high degree were found by the methods described here. The polynomials are all trinomials; such trinomials are useful for generating pseudo-random sequences of 0's and 's of long length [1].

**[1]**Robert C. Tausworthe,*Random numbers generated by linear recurrence modulo two*, Math. Comp.**19**(1965), 201–209. MR**0184406**, 10.1090/S0025-5718-1965-0184406-1**[2]**A. Adrian Albert,*Fundamental concepts of higher algebra*, The University of Chicago Press, Chicago, Ill., 1958. MR**0098735****[3]**S. W. Golomb, et. al.,*Digital Communications With Space Applications*, Prentice-Hall, Englewood Cliffs, N. J., 1964.**[4]**E. J. Watson,*Primitive polynomials (𝑚𝑜𝑑2)*, Math. Comp.**16**(1962), 368–369. MR**0148256**, 10.1090/S0025-5718-1962-0148256-1**[5]**Richard G. Swan,*Factorization of polynomials over finite fields*, Pacific J. Math.**12**(1962), 1099–1106. MR**0144891**

Retrieve articles in *Mathematics of Computation*
with MSC:
12.30

Retrieve articles in all journals with MSC: 12.30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1968-0238813-1

Article copyright:
© Copyright 1968
American Mathematical Society