<table>
<thead>
<tr>
<th>Page</th>
<th>Formula</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>$8.772(3)$</td>
<td>For (z + \frac{1}{2}), read (\left(z + \frac{1}{2} \right)^n).</td>
</tr>
<tr>
<td></td>
<td>$8.773(1)$</td>
<td>For (\mu + \frac{3}{2}), read (\nu + \frac{3}{2}).</td>
</tr>
<tr>
<td>1013</td>
<td>8.792</td>
<td>For (\sum_{k=1}^\infty), read (\sum_{k=0}^\infty).</td>
</tr>
<tr>
<td>1016</td>
<td>$8.820(2)$</td>
<td>For (\nu + \frac{3}{2}), read (\nu + \frac{3}{2}).</td>
</tr>
<tr>
<td>1019</td>
<td>$8.831(3)$</td>
<td>For (2E \left(\frac{n-1}{2} \right)), read (E \left(\frac{n-1}{2} \right)).</td>
</tr>
<tr>
<td>1023</td>
<td>$8.852(2)$</td>
<td>For (2^{-m}), read (2^{-2m}).</td>
</tr>
<tr>
<td>1028</td>
<td>8.923</td>
<td>For (\sum_{k=0}^\infty), read (\sum_{k=1}^\infty), and add (\frac{\pi x}{2}) to the right member.</td>
</tr>
</tbody>
</table>

Eldon R. Hansen

Merrell L. Patrick

Lockheed Research Laboratories

Palo Alto, California

Duke University

Durham, North Carolina 27706

P. 5: In the next to the last line before Section 1.3.2, for \(L_{kq} \), read \(L_{kq}(-z) \).

P. 15, Eq. (2): For \(-\psi(1 + \beta q + k) + \psi(1 + \beta q) \), read \(-\psi(1 + \delta q + k) + \psi(1 + \delta q) \).

P. 17, Eq. (7): In the \(p+1F_{q+1} \), for \(b_q + m \), read \(1 + b_q + m \).

P. 24, Eq. (16): In the finite sum, i.e., in \(\sum_{k=0}^{2n-1} \), divide \((2n - 1 - k)! \) by \(k! \). The same correction should be made in the corresponding finite sums in Eqs. 4.2(2), 4.2(8), 4.2(10), 4.2(11) and 4.2(12), which are on pp. 96-99.

P. 25, Eq. (21): For \(\pi(1 - \nu^2) \) in denominator of second term, read \(\nu\pi(1 - \nu^2) \).

P. 26, Eq. (10): Insert \((-)^k \) behind \(\sum_{n=0}^{n-1} \).

P. 34, Eq. (3): For \(x^{-n}J_n(x) \) read \((x/4)^{-n}J_n(x) \).

P. 76, Eq. (1): Insert \((-)^k \) behind \(\sum_{n=0}^{n-1} \).

P. 98, Eq. (9): In the terms enclosed in [], replace \(k \) by \(m \).

TABLE ERRATA

P. 101, Eq. (8): In the expression for \(\beta \), replace \((v^2 - \frac{1}{4}) \) by \((v^2 - \frac{1}{4})^{-1} \).

P. 104, Eq. (10): The constant term should read

\[
\frac{-\Gamma(\mu + \nu + 1)\Gamma(\mu - \nu + 1)\cos \nu \pi}{2^\mu (3/2)_\mu \cos \mu \pi}
\]

as in Eq. 4.5(5).

P. 125, Eq. (27): The second line of the right-hand side of this equation should read

\[
= \int_0^z J_0(t) dt + J_{2n+1}(z) - 2 \sum_{k=0}^n J_{2k+1}(z).\]

P. 141: In the first line after 6.5, for 1.4.7, read 1.4.8.

P. 150, Eq. (13):

For \(1 + 2 \sum_{k=1}^\infty \cdots \), read \(I_0(z/2) + 2 \sum_{k=1}^\infty \cdots \).

P. 154: For the first line before Eq. (9) read as follows: complex plane with center at the origin and \(a \) is an integer or zero, then

P. 154, Eq. (9): Replace the right-hand side of this equality by

\[
\frac{(-)^m}{(m-n)!(m+n+a+1)!},
\]

P. 154, Eq. (10): Replace the right-hand side of the second equality by

\[
\frac{(-)^n}{(2n+a+1)(n+a)!}, \text{ if } m = n.
\]

P. 157: For the two lines following Eq. (25) read as follows: Define \(K = n + 1 - a/2 \). If \(a \) is bounded, \(z \) is fixed and nonzero, then

P. 159: For the two lines following Eq. (33) read as follows: Define \(K_1 = n + (1 - a)/2 \). Again if \(a \) is bounded, \(z \) is fixed and nonzero, then

P. 178, Eq. (32):

For \(\Phi \left(-\frac{n+1}{2}, \frac{1}{2}; z^2 \right) \), read \(\Phi \left(\frac{n+1}{2}, \frac{1}{2}; z^2 \right) \).

P. 181: In the first line after Eq. (18), for \(\imath c(z) \) read \(\imath c(z) \).

P. 211, Eq. (3): For \(y_{a-1}(z) \), read \(j_{a-1}(z) \).

P. 226, Eq. (5): In the second line of this equation, for \(\cos \nu \mu \), read \(\cos \nu \pi \).

P. 254, Eq. (1): The right-hand side should read

\[
z \left[kC_{\mu+1}(kz)D_\nu(lz) - lC_\mu(kz)D_{\nu+1}(lz) \right] - (\mu - \nu)C_\mu(kz)D_\nu(lz).
\]

P. 260, Eq. (29): For \(R(\mu + \nu + \rho) \), read \(R(2\nu + \rho) \).

P. 290, Eq. (1): For \(B_J(z) \), read \(B_Y(z) \).

P. 308, Eq. (1): In the second integral expression, for \(J_{\nu-1}(z \cos \theta) \), read \(J_{\nu-1}(z \sin \theta) \).

P. 325, Eq. (4): In the second line replace \((a^2 - b^2)^{\nu-r+1} \) by \((a^2 - b^2)^{\nu-r+1} \).

P. 346, Eq. (14):

For \(\int_a^\infty \cdots = A(x) \), read \(\int_a^\infty \cdots = A(x) \).

Y. L. L.

P. 119, Line 5: In place of the factor
\[\frac{\Gamma(2\mu + 1)}{(z + \xi)^\mu}, \]
read \(\Gamma(2\mu + 1)(z + \xi)^{1/2} \).

HENRY E. FETTIS

Applied Mathematics Research Laboratory
Wright-Patterson Air Force Base, Ohio