The Riemann hypothesis and pseudorandom features of the Möbius sequence

Authors:
I. J. Good and R. F. Churchhouse

Journal:
Math. Comp. **22** (1968), 857-861

MSC:
Primary 10.41

MathSciNet review:
0240062

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A study of the cumulative sums of the Möbius function on the Atlas Computer of the Science Research Council has revealed certain statistical properties which lead the authors to make a number of conjectures. One of these is that any conjecture of the Mertens type, viz.

**[1]**W. K. Feller,*An Introduction to Probability Theory and its Applications*, Vol. 1, Wiley, New York, 1950. MR**12**, 424.**[2]**I. J. Good,*Random motion on a finite Abelian group*, Proc. Cambridge Philos. Soc.**47**(1951), 756–762. MR**0044061****[3]**C. B. Haselgrove,*A disproof of a conjecture of Pólya*, Mathematika**5**(1958), 141–145. MR**0104638****[4]**A. E. Ingham,*The distribution of prime numbers*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR**1074573****[5]**J. E. Littlewood, "Sur la distribution des nombres premiers,"*C. R. Acad. Sci. Paris*, v. 158, 1914, pp. 1869-1872.**[6]**J. E. Littlewood, "The Riemann hypothesis" in*The Scientist Speculates*, edited by Good, Mayne & Maynard Smith, London and New York, 1962, pp. 390-391.**[7]**Gerhard Neubauer,*Eine empirische Untersuchung zur Mertensschen Funktion*, Numer. Math.**5**(1963), 1–13 (German). MR**0155787****[8]**J. B. Rosser & L. Schoenfeld, "The first two million zeros of the Riemann zeta-function are on the critical line,"*Abstracts for the Conference of Mathematicians*, Moscow, 1966, 8. (Unpublished.)**[9]**E. C. Titchmarsh,*The Theory of the Riemann Zeta-Function*, Oxford, at the Clarendon Press, 1951. MR**0046485**

Retrieve articles in *Mathematics of Computation*
with MSC:
10.41

Retrieve articles in all journals with MSC: 10.41

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1968-0240062-8

Article copyright:
© Copyright 1968
American Mathematical Society