A multistep formulation of the optimized LaxWendroff method for nonlinear hyperbolic systems in two space variables
Authors:
A. R. Gourlay and J. Ll. Morris
Journal:
Math. Comp. 22 (1968), 715719
MSC:
Primary 65.67
MathSciNet review:
0251931
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Samuel
Z. Burstein, Numerical methods in multidimensional shocked
flows, AIAA J. 2 (1964), 2111–2117. MR 0180067
(31 #4304)
 [2]
S. Z. Burstein, "Finite difference calculations for hydrodynamic flows containing discontinuities," J. Computational Phys., v. 1, 1966, pp. 198222.
 [3]
A.
R. Gourlay and J.
Ll. Morris, Finite difference methods for
nonlinear hyperbolic systems, Math. Comp.
22 (1968), 28–39.
MR
0223114 (36 #6163), http://dx.doi.org/10.1090/S00255718196802231148
 [4]
Peter
D. Lax and Burton
Wendroff, Difference schemes for hyperbolic equations with high
order of accuracy, Comm. Pure Appl. Math. 17 (1964),
381–398. MR 0170484
(30 #722)
 [5]
R. D. Richtmyer, A Survey of Difference Methods for NonSteady Fluid Dynamics, N.C.A.R. Tech. Notes 632, 1963.
 [6]
Gilbert
Strang, Accurate partial difference methods. I. Linear Cauchy
problems, Arch. Rational Mech. Anal. 12 (1963),
392–402. MR 0146970
(26 #4489)
 [7]
Gilbert
Strang, Accurate partial difference methods. II. Nonlinear
problems, Numer. Math. 6 (1964), 37–46. MR 0166942
(29 #4215)
 [8]
H. V. Thommen, A Method for the Numerical Solution of the Complete NavierStokes Equations for Steady Flows, General Dynamics/Astronautics GDCERRAN 733, April 1965.
 [1]
 S. Z. Burstein, "Numerical calculations of multidimensional shocked flows," AIAA J., v. 2, 1964, pp. 21112117. MR 31 #4304. MR 0180067 (31:4304)
 [2]
 S. Z. Burstein, "Finite difference calculations for hydrodynamic flows containing discontinuities," J. Computational Phys., v. 1, 1966, pp. 198222.
 [3]
 A. R. Gourlay & J. Ll. Morris, "Finitedifference methods for nonlinear hyperbolic systems," Math. Comp., v. 22, 1968, pp. 2839. MR 0223114 (36:6163)
 [4]
 P. D. Lax & B. Wendroff, "Difference schemes for hyperbolic equations with high order of accuracy," Comm. Pure Appl. Math., v. 17, 1964, pp. 381398. MR 30 #722. MR 0170484 (30:722)
 [5]
 R. D. Richtmyer, A Survey of Difference Methods for NonSteady Fluid Dynamics, N.C.A.R. Tech. Notes 632, 1963.
 [6]
 W. G. Strang, "Accurate partial difference methods. I: Linear Cauchy problems," Arch. Rational Mech. Anal., v. 12, 1963, pp. 392402. MR 26 #4489. MR 0146970 (26:4489)
 [7]
 W. G. Strang, "Accurate partial difference methods. II: Nonlinear problems," Numer. Math., v. 6, 1964, pp. 3746. MR 29 #4215. MR 0166942 (29:4215)
 [8]
 H. V. Thommen, A Method for the Numerical Solution of the Complete NavierStokes Equations for Steady Flows, General Dynamics/Astronautics GDCERRAN 733, April 1965.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.67
Retrieve articles in all journals
with MSC:
65.67
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196802519317
PII:
S 00255718(1968)02519317
Article copyright:
© Copyright 1968
American Mathematical Society
