Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 22 (1968), 893
Fulltext PDF Free Access
References 
Additional Information
 [1]
O.
S. Berlyand, R.
I. Gavrilova, and A.
P. Prudnikov, Tables of integral error functions and Hermite
polynomials, Translated by Prasenjit Basu. A Pergamon Press Book, The
Macmillan Co., New York, 1962. MR 0156004
(27 #5937)
 [2]
Milton
Abramowitz and Irene
A. Stegun (eds.), Handbook of mathematical functions with formulas,
graphs, and mathematical tables, A WileyInterscience Publication,
John Wiley & Sons, Inc., New York; National Bureau of Standards,
Washington, DC, 1984. Reprint of the 1972 edition; Selected Government
Publications. MR
757537 (85j:00005a)
 [1]
G. W. Reitwiesner, A Table of Factorial Numbers and their Reciprocals from through to 20 Significant Digits, Ballistic Research Laboratories, Technical Note No. 381, Aberdeen Proving Ground, Maryland, 1951. (MTAC, v. 6, 1952, p. 32, RMT 955.)
 [2]
H. E. Salzer, Tables of and for the First Thousand Values of , National Bureau of Standards, AMS 16, Washington, D. C., 1951. (MTAC, v. 6, 1952, p. 33, RMT 957.)
 [3]
J.
B. Reid and G.
Montpetit, Tables of factorials 0! to 9999!, National Academy
of SciencesNational Research Council, Publ. 1039, 1962. MR 0146410
(26 #3932)
 [4]
F.
Giannesini and J.
P. Rouits, Tables des coefficients du binôme et des
factorielles. 𝐶_{𝑛}^{𝑝}, 𝑛 variant de 1
à 100, 10 chiffres significatifs; 𝑛!, 𝑛 variant de 1
à 1775, 20 chiffres significatifs, Préface de J. Legras,
Dunod, Paris, 1963 (French). MR 0153873
(27 #3834)
 [5]
M. Lal, Exact Values of Factorials 200! to 550!; and M. Lal & W. Russell, Exact Values of Factorials 500! to 1000!, Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland; the first dated August 1967, the second undated. (Math. Comp., v. 22, 1968, pp. 686687, UMT 67, 68.)
 [1]
Math. Comp., v. 21, 1967, pp. 258259, UMT 17.
 [2]
Math. Comp., v. 22, 1968, p. 226, UMT 12.
 [3]
Math. Comp., v. 22, 1968, p. 234, UMT 22.
 [1]
E. T. Bell, "Exponential polynomials," Ann. of Math., v. 35, 1934, pp. 258277.
 [2]
E. T. Bell, "Exponential numbers," Amer. Math. Monthly, v. 41, 1934, pp. 411419.
 [3]
John
Riordan, An introduction to combinatorial analysis, Wiley
Publications in Mathematical Statistics, John Wiley & Sons, Inc., New
York; Chapman & Hall, Ltd., London, 1958. MR 0096594
(20 #3077)
 [4]
Milton
Abramowitz and Irene
A. Stegun (eds.), Handbook of mathematical functions with formulas,
graphs, and mathematical tables, A WileyInterscience Publication,
John Wiley & Sons, Inc., New York; National Bureau of Standards,
Washington, DC, 1984. Reprint of the 1972 edition; Selected Government
Publications. MR
757537 (85j:00005a)
 [5]
H. S. Hsieh & G. W. Zopf, Determination of Equivalence Classes by Orthogonal Properties, Technical Report No. 2, Project No. 60(87232), Electrical Engineering Research Laboratory, University of Illinois, 1962.
 [1]
 O. S. Berlyand, R. I. Gavrilova & A. P. Prudnikov, Tables of Integral Error Functions and Hermite Polynomials, Pergamon Press, Oxford, 1962. (See Math. Camp., v. 17, 1963, pp. 470471, RMT 80.) MR 0156004 (27:5937)
 [2]
 M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, pp. 317318, Table 7.4. MR 757537 (85j:00005a)
 [1]
 G. W. Reitwiesner, A Table of Factorial Numbers and their Reciprocals from through to 20 Significant Digits, Ballistic Research Laboratories, Technical Note No. 381, Aberdeen Proving Ground, Maryland, 1951. (MTAC, v. 6, 1952, p. 32, RMT 955.)
 [2]
 H. E. Salzer, Tables of and for the First Thousand Values of , National Bureau of Standards, AMS 16, Washington, D. C., 1951. (MTAC, v. 6, 1952, p. 33, RMT 957.)
 [3]
 J. B. Reid & G. Montpetit, Table of Factorials 0! to 9999!, Publication 1039, National Academy of SciencesNational Research Council, Washington, D. C., 1962. (Math. Comp., v. 17, 1963, p. 459, RMT 67.) MR 0146410 (26:3932)
 [4]
 P. Giannesini <fe J. P. Rouits, Tables des coefficients du binôme et des factorielles, Dunod, Paris, 1963. (Math. Comp., v. 18, 1964, p. 326, RMT 40.) MR 0153873 (27:3834)
 [5]
 M. Lal, Exact Values of Factorials 200! to 550!; and M. Lal & W. Russell, Exact Values of Factorials 500! to 1000!, Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland; the first dated August 1967, the second undated. (Math. Comp., v. 22, 1968, pp. 686687, UMT 67, 68.)
 [1]
 Math. Comp., v. 21, 1967, pp. 258259, UMT 17.
 [2]
 Math. Comp., v. 22, 1968, p. 226, UMT 12.
 [3]
 Math. Comp., v. 22, 1968, p. 234, UMT 22.
 [1]
 E. T. Bell, "Exponential polynomials," Ann. of Math., v. 35, 1934, pp. 258277.
 [2]
 E. T. Bell, "Exponential numbers," Amer. Math. Monthly, v. 41, 1934, pp. 411419.
 [3]
 J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958. MR 0096594 (20:3077)
 [4]
 M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1964, Table 24.2, pp. 831 832. MR 757537 (85j:00005a)
 [5]
 H. S. Hsieh & G. W. Zopf, Determination of Equivalence Classes by Orthogonal Properties, Technical Report No. 2, Project No. 60(87232), Electrical Engineering Research Laboratory, University of Illinois, 1962.
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571868998633
PII:
S 00255718(68)998633
Article copyright:
© Copyright 1968
American Mathematical Society
