Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **22** (1968), 893

DOI:
https://doi.org/10.1090/S0025-5718-68-99863-3

Full-text PDF

References | Additional Information

**[1]**O. S. Berlyand, R. I. Gavrilova & A. P. Prudnikov,*Tables of Integral Error Functions and Hermite Polynomials*, Pergamon Press, Oxford, 1962. (See*Math. Camp.*, v. 17, 1963, pp. 470-471, RMT**80**.) MR**0156004 (27:5937)****[2]**M. Abramowitz & I. A. Stegun, Editors,*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, pp. 317-318, Table 7.4. MR**757537 (85j:00005a)****[1]**G. W. Reitwiesner,*A Table of Factorial Numbers and their Reciprocals from**through**to 20 Significant Digits*, Ballistic Research Laboratories, Technical Note No. 381, Aberdeen Proving Ground, Maryland, 1951. (*MTAC*, v. 6, 1952, p. 32, RMT**955**.)**[2]**H. E. Salzer,*Tables of**and**for the First Thousand Values of*, National Bureau of Standards, AMS 16, Washington, D. C., 1951. (*MTAC*, v. 6, 1952, p. 33, RMT 957.)**[3]**J. B. Reid & G. Montpetit, Table of Factorials 0! to 9999!, Publication 1039, National Academy of Sciences--National Research Council, Washington, D. C., 1962. (Math. Comp., v. 17, 1963, p. 459, RMT 67.) MR**0146410 (26:3932)****[4]**P. Giannesini <fe J. P. Rouits, Tables des coefficients du binôme et des factorielles, Dunod, Paris, 1963. (Math. Comp., v. 18, 1964, p. 326, RMT 40.) MR**0153873 (27:3834)****[5]**M. Lal, Exact Values of Factorials 200! to 550!; and M. Lal & W. Russell, Exact Values of Factorials 500! to 1000!, Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland; the first dated August 1967, the second undated. (Math. Comp., v. 22, 1968, pp. 686-687, UMT 67, 68.)**[1]***Math. Comp.*, v. 21, 1967, pp. 258-259, UMT**17**.**[2]***Math. Comp.*, v. 22, 1968, p. 226, UMT**12**.**[3]***Math. Comp.*, v. 22, 1968, p. 234, UMT**22**.**[1]**E. T. Bell, "Exponential polynomials,"*Ann. of Math.*, v. 35, 1934, pp. 258-277.**[2]**E. T. Bell, "Exponential numbers,"*Amer. Math. Monthly*, v. 41, 1934, pp. 411-419.**[3]**J. Riordan,*An Introduction to Combinatorial Analysis*, John Wiley & Sons, New York, 1958. MR**0096594 (20:3077)****[4]**M. Abramowitz & I. A. Stegun, Editors,*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards, Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1964, Table 24.2, pp. 831- 832. MR**757537 (85j:00005a)****[5]**H. S. Hsieh & G. W. Zopf,*Determination of Equivalence Classes by Orthogonal Properties*, Technical Report No. 2, Project No. 60(8-7232), Electrical Engineering Research Laboratory, University of Illinois, 1962.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-68-99863-3

Article copyright:
© Copyright 1968
American Mathematical Society