Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **22** (1968), 893

Full-text PDF Free Access

References | Additional Information

**[1]**O. S. Berlyand, R. I. Gavrilova, and A. P. Prudnikov,*Tables of integral error functions and Hermite polynomials*, Translated by Prasenjit Basu. A Pergamon Press Book, The Macmillan Co., New York, 1962. MR**0156004****[2]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; National Bureau of Standards, Washington, DC, 1984. Reprint of the 1972 edition; Selected Government Publications. MR**757537****[1]**G. W. Reitwiesner,*A Table of Factorial Numbers and their Reciprocals from**through**to 20 Significant Digits*, Ballistic Research Laboratories, Technical Note No. 381, Aberdeen Proving Ground, Maryland, 1951. (*MTAC*, v. 6, 1952, p. 32, RMT**955**.)**[2]**H. E. Salzer,*Tables of**and**for the First Thousand Values of*, National Bureau of Standards, AMS 16, Washington, D. C., 1951. (*MTAC*, v. 6, 1952, p. 33, RMT 957.)**[3]**J. B. Reid and G. Montpetit,*Tables of factorials 0! to 9999!*, National Academy of Sciences-National Research Council, Publ. 1039, 1962. MR**0146410****[4]**F. Giannesini and J. P. Rouits,*Tables des coefficients du binôme et des factorielles. 𝐶_{𝑛}^{𝑝}, 𝑛 variant de 1 à 100, 10 chiffres significatifs; 𝑛!, 𝑛 variant de 1 à 1775, 20 chiffres significatifs*, Préface de J. Legras, Dunod, Paris, 1963 (French). MR**0153873****[5]**M. Lal, Exact Values of Factorials 200! to 550!; and M. Lal & W. Russell, Exact Values of Factorials 500! to 1000!, Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland; the first dated August 1967, the second undated. (Math. Comp., v. 22, 1968, pp. 686-687, UMT 67, 68.)**[1]***Math. Comp.*, v. 21, 1967, pp. 258-259, UMT**17**.**[2]***Math. Comp.*, v. 22, 1968, p. 226, UMT**12**.**[3]***Math. Comp.*, v. 22, 1968, p. 234, UMT**22**.**[1]**E. T. Bell, "Exponential polynomials,"*Ann. of Math.*, v. 35, 1934, pp. 258-277.**[2]**E. T. Bell, "Exponential numbers,"*Amer. Math. Monthly*, v. 41, 1934, pp. 411-419.**[3]**John Riordan,*An introduction to combinatorial analysis*, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR**0096594****[4]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; National Bureau of Standards, Washington, DC, 1984. Reprint of the 1972 edition; Selected Government Publications. MR**757537****[5]**H. S. Hsieh & G. W. Zopf,*Determination of Equivalence Classes by Orthogonal Properties*, Technical Report No. 2, Project No. 60(8-7232), Electrical Engineering Research Laboratory, University of Illinois, 1962.

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-68-99863-3

Article copyright:
© Copyright 1968
American Mathematical Society