Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 22 (1968), 893
DOI: https://doi.org/10.1090/S0025-5718-68-99863-3
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] O. S. Berlyand, R. I. Gavrilova & A. P. Prudnikov, Tables of Integral Error Functions and Hermite Polynomials, Pergamon Press, Oxford, 1962. (See Math. Camp., v. 17, 1963, pp. 470-471, RMT 80.) MR 0156004 (27:5937)
  • [2] M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, pp. 317-318, Table 7.4. MR 757537 (85j:00005a)
  • [1] G. W. Reitwiesner, A Table of Factorial Numbers and their Reciprocals from $ 1!$ through to 20 Significant Digits, Ballistic Research Laboratories, Technical Note No. 381, Aberdeen Proving Ground, Maryland, 1951. (MTAC, v. 6, 1952, p. 32, RMT 955.)
  • [2] H. E. Salzer, Tables of $ n!$ and $ \Gamma (n + 1/2)$ for the First Thousand Values of $ n$, National Bureau of Standards, AMS 16, Washington, D. C., 1951. (MTAC, v. 6, 1952, p. 33, RMT 957.)
  • [3] J. B. Reid & G. Montpetit, Table of Factorials 0! to 9999!, Publication 1039, National Academy of Sciences--National Research Council, Washington, D. C., 1962. (Math. Comp., v. 17, 1963, p. 459, RMT 67.) MR 0146410 (26:3932)
  • [4] P. Giannesini <fe J. P. Rouits, Tables des coefficients du binôme et des factorielles, Dunod, Paris, 1963. (Math. Comp., v. 18, 1964, p. 326, RMT 40.) MR 0153873 (27:3834)
  • [5] M. Lal, Exact Values of Factorials 200! to 550!; and M. Lal & W. Russell, Exact Values of Factorials 500! to 1000!, Department of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland; the first dated August 1967, the second undated. (Math. Comp., v. 22, 1968, pp. 686-687, UMT 67, 68.)
  • [1] Math. Comp., v. 21, 1967, pp. 258-259, UMT 17.
  • [2] Math. Comp., v. 22, 1968, p. 226, UMT 12.
  • [3] Math. Comp., v. 22, 1968, p. 234, UMT 22.
  • [1] E. T. Bell, "Exponential polynomials," Ann. of Math., v. 35, 1934, pp. 258-277.
  • [2] E. T. Bell, "Exponential numbers," Amer. Math. Monthly, v. 41, 1934, pp. 411-419.
  • [3] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958. MR 0096594 (20:3077)
  • [4] M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1964, Table 24.2, pp. 831- 832. MR 757537 (85j:00005a)
  • [5] H. S. Hsieh & G. W. Zopf, Determination of Equivalence Classes by Orthogonal Properties, Technical Report No. 2, Project No. 60(8-7232), Electrical Engineering Research Laboratory, University of Illinois, 1962.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-68-99863-3
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society