The calculation of the eigenvectors of a general complex matrix by inverse iteration

Author:
J. M. Varah

Journal:
Math. Comp. **22** (1968), 785-791

DOI:
https://doi.org/10.1090/S0025-5718-68-99868-2

MathSciNet review:
0240968

Full-text PDF

References | Additional Information

**[1]**D. J. Mueller, "Householder's method for complex matrices and eigensystems of hermitian matrices,"*Numer. Math.*, v. 8, 1966, pp. 72-92. MR**33**#872. MR**0192647 (33:872)****[2]**E. E. Osborne, "On pre-conditioning of matrices,"*J. Assoc. Comput. Mach.*, v. 7, 1960, pp. 338-345. MR**26**#892. MR**0143333 (26:892)****[3]**B. N. Parlett, "Laguerre's method applied to the matrix eigenvalue problem,"*Math. Comp.*, v. 18, 1964, pp. 464-485. MR**29**#2948.**[4]**J. H. Wilkinson, "The calculation of the eigenvectors of codiagonal matrices,"*Comput. J.*, v. 1, 1958, pp. 90-96. MR**0102915 (21:1700)****[5]**J. H. Wilkinson,*Rounding Errors in Algebraic Processes*, Notes on Applied Science No. 32, HMSO, London; Prentice-Hall, Englewood Cliffs, N. J., 1963. MR**28**#4661. MR**0161456 (28:4661)****[6]**J. H. Wilkinson,*The Algebraic Eigenvalue Problem*, Clarendon Press, Oxford, 1965. MR**32**#1894. MR**0184422 (32:1894)****[7]**J. M. Varah, "Rigorous machine bounds for the eigensystem of a general complex matrix,"*Math. Comp.*, v. 22, 1968, pp. 793-801. MR**0243731 (39:5052)**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-68-99868-2

Article copyright:
© Copyright 1968
American Mathematical Society