Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A nonlinear alternating direction method


Author: R. B. Kellogg
Journal: Math. Comp. 23 (1969), 23-27
MSC: Primary 65.68
DOI: https://doi.org/10.1090/S0025-5718-1969-0238507-3
MathSciNet review: 0238507
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An alternating direction iteration method is formulated, and convergence is proved, for the solution of certain systems of nonlinear equations. The method is applied to a heat conduction problem with a nonlinear boundary condition.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Peaceman & H. H. Rachford, Jr., ``The numerical solution of parabolic and elliptic differential equations,'' J. Soc. Indust. Appl. Math., v. 3, 1955, pp. 28-41. MR 17, 196. MR 0071874 (17:196d)
  • [2] G. Birkhoff, R. S. Varga & D. Young, ``Alternating direction implicit methods,'' Advances in Computers, Vol. 3, Academic Press, New York, 1962, pp. 189-273. MR 29 #5395. MR 0168131 (29:5395)
  • [3] J. Spanier, ``Alternating direction methods applied to heat conduction problems,'' Mathematical Methods for Digital Computers, Vol. 2, Wiley, New York, 1967.
  • [4] H. S. Carslaw & J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, London, 1947. MR 9, 188. MR 0022294 (9:188a)
  • [5] G. J. Minty, ``Monotone (nonlinear) operators in Hubert space,'' Duke Math. J., v. 29, 1962, pp. 341-346. MR 29 #6319. MR 0169064 (29:6319)
  • [6] D. G. deFigueiredo, Topics in Nonlinear Functional Analysis, Institute for Fluid Dynamics & Applied Mathematics, no. 48, Lecture Series, Univ. of Maryland, 1967.
  • [7] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [8] D. Greenspan & S. Parter, ``Mildly nonlinear elliptic partial differential equations and their numerical solution. II,'' Numer. Math., v. 7, 1965, pp. 129-146. MR 31 #1777. MR 0177514 (31:1777)
  • [9] J. M. Ortega & W. C. Rheinboldt, ``Monotone iterations for nonlinear equations with application to Gauss-Seidel methods,'' SIAM J. Numer. Anal., v. 4, 1967, pp. 171-190. MR 35 #6328. MR 0215487 (35:6328)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.68

Retrieve articles in all journals with MSC: 65.68


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1969-0238507-3
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society