On Designs of Maximal (+1, -1)-Matrices of Order \(n=2 \pmod{4} \). II*

By C. H. Yang

Abstract. Finding maximal (+1, -1)-matrices \(M_{2m} \) of order \(2m \) (with odd \(m \)) constructible in the standard form

\[
\begin{pmatrix}
 A & B \\
- & -B^T & A^T
\end{pmatrix}
\]

is reduced to the finding of two polynomials \(C(w) \), \(D(w) \) (corresponding to the circulant submatrices \(A, B \)) satisfying

\[
|C(w)|^2 + |D(w)|^2 = \frac{1}{2}(m - 1)
\]

where \(w \) is any primitive \(m \)th root of unity. Thus, all \(M_{2m} \) constructible by the standard form (see [4]) can be classified by the formula (*). Some new matrices \(M_{2m} \) for \(m = 25, 27, 31 \), were found by this method.

Let \(M_{2m} \) be a maximal (+1, -1)-matrix of order \(2m \) and let \(S = ((s_i)) \) be the circulant matrix of order \(m \) with the first row entries \(s_i \) (\(0 \leq i \leq m - 1 \)), all zero but \(s_1 = 1 \).

When \(m \) is odd, it is known that (for \(m \leq 27 \), except \(m = 11, 17 \); see [1]—[4]), \(M_{2m} \) can be constructed by the following matrix:**

\[
R = \begin{pmatrix}
 A & B \\
- & -B^T & A^T
\end{pmatrix}, \quad \text{where } A = \sum_{k=0}^{m-1} a_k S^k, B = \sum_{k=0}^{m-1} b_k S^k \text{ with } a_k \text{ and } b_k \text{ 1 or } -1, \text{ and } T \text{ indicates the transposed matrix. Then the gramian matrix of } R \text{ becomes}
\]

\[
RR^T = \begin{pmatrix}
P & 0 \\
0 & P
\end{pmatrix},
\]

where \(P \) is equal to

\[
AA^T + BB^T = 2 \left(mI + \sum_{k=1}^{m-1} S^k \right),
\]

where \(I \) is the identity matrix of order \(m \).

By applying to the both sides of (2) the transformation \(L \) which transforms \(S \) into a diagonal matrix \(W = [w_1, \cdots, w_m] \) with \(w_j \), all distinct \(m \)th roots of unity, (namely, \(L(S) = U^*SU = W \), where \(U \) is unitary and * indicates the conjugate transpose; see [5]) we obtain

** For \(n = 25 \), without circulancy of submatrices \(A \) and \(B \), see [2]; also see Addition of this paper.

Received July 10, 1967, revised August 5, 1968.

* This research was supported by Faculty Research Fellowship of The Research Foundation of The State University of New York.

** For \(n = 25 \), without circulancy of submatrices \(A \) and \(B \), see [2]; also see Addition of this paper.
A(w)A(w^{m-1}) + B(w)B(w^{m-1}) = 2\left(m + \sum_{k=1}^{m-1} w^k\right)

where

A(w) = \sum_{k=0}^{m-1} a_k w^k, \quad B(w) = \sum_{k=0}^{m-1} b_k w^k,

and w is any mth root of unity.

Since w and w^{m-1} are conjugate to each other, (3) is also equivalent to

|A(w)|^2 + |B(w)|^2 = 2\left(m + \sum_{k=1}^{m-1} w^k\right).

Let p and q be respectively the numbers of \(-1\)'s in each row of A and B. By replacing 1 by 0 and \(-1\) by 1 in A and B and performing the similar process as above, we obtain the following formula corresponding to (4).

|C(w)|^2 + |D(w)|^2 = p + q + r \sum_{k=1}^{m-1} w^k,

Table I

<table>
<thead>
<tr>
<th>m</th>
<th>C(w)</th>
<th>D(w)</th>
<th>N_A</th>
<th>N_B</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 + w + w^2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1 + w^2 + w^4</td>
<td>1 + w + w^3 + w^6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1 + w</td>
<td>1 + w^2 + w^4</td>
<td>1 + w^3 + w^6 + w^8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1 + w + w^3 + w^9</td>
<td>1 + w + w^2 + w^4 + w^6 + w^8</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1 + w + w^4 + w^6</td>
<td>1 + w^2 + w^4 + w^6 + w^{10}</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1 + w + w^4 + w^{10}</td>
<td>1 + w + w^2 + w^4 + w^6 + w^8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>1 + w + w^2 + w^6 + w^{10} + w^{14}</td>
<td>1 + w^3 + w^4 + w^7 + w^12</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1 + w + w^2 + w^6 + w^{12} + w^{14}</td>
<td>1 + w + w^3 + w^4 + w^8 + w^{10} + w^{14}</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1 + w + w^2 + w^6 + w^{12} + w^{14} + w^{15}</td>
<td>1 + w + w^3 + w^4 + w^8 + w^{10} + w^{16}</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1 + w + w^2 + w^3 + w^6 + w^{12}</td>
<td>1 + w + w^5 + w^7 + w^9 + w^{12} + w^{15}</td>
<td>9</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Table II

<table>
<thead>
<tr>
<th>m</th>
<th>$C(w^k)$</th>
<th>$D(w^k)$</th>
<th>$N = N_A = N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^7 + w^9 + w^{10} + w^{11} + w^{13} + w^{14} + w^{15}$</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{14} + w^{15}$</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{13} + w^{14}$</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{14} + w^{15}$</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{13} + w^{14}$</td>
<td>$1 + w + w^2 + w^3 + w^4 + w^5 + w^6 + w^7 + w^8 + w^9 + w^{10} + w^{11} + w^{14} + w^{15}$</td>
<td>11</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>k</th>
<th>B corresponding to $D(w^k)$</th>
<th>A corresponding to $C(w^k)$</th>
</tr>
</thead>
</table>
| 2 | $+$ + $+$ + $+$ + $+$ + $+$ + $+$ + $+$ + $+$ | $+$ $+

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(C(w) = \sum_{k=0}^{n-1} c_k w^k \) with \(c_k = 0 \) whenever \(a_k = 1 \) and \(c_k = 1 \) whenever \(a_k = -1 \); \(D(w) \) is similarly defined. The following relation is satisfied by \(r \), when \(w = 1 \) is put into (5).

\[
p^2 + q^2 = p + q + r(m - 1) .
\]

Similarly from (4), we have

\[
(m - 2p)^2 + (m - 2q)^2 = 4m - 2 .
\]

When \(w \neq 1 \), from (5), (6), and (7), we obtain

\[
(*) \quad |C(w)|^2 + |D(w)|^2 = \frac{1}{2}(m - 1) .
\]

All maximal \((+1, -1)\)-matrices \(M_{2m} \) for odd \(m \) constructible by (1) with the restriction \(p \leq q < \frac{1}{2}m \), for \(m \leq 19 \) were listed in [4].

Thus construction of maximal matrices is reduced to finding of polynomials \(C(w) \), \(D(w) \) satisfying \((*)\). Table I is obtained according to this classification for \(n = 2m \leq 38 \). In this table, \(N, N_A, N_B \) are respectively numbers of distinct types of matrices \(M_n, A, B \); \(w \) and \(w_0 \) are any primitive \(m \)th roots of unity.

For example, when \(n = 18, m = 9 \); primitive 9th roots of unity are \(w = \exp(2\pi i/9), w^2, w^4, w^8 \) for \(k = 5, 7, 8 \). Since \(w^k \) and \(w^{m-k} \) are symmetric with respect to \(w^m = 1 \) which corresponds to the main diagonal, \(C(w^k) \) and \(C(w^{m-k}) \) produce designs of the same type. Consequently we can omit the cases for \(w^k \) with \(k \leq 5 \). \(C(w) = 1 + w \) and \(D(w) = 1 + w^2 + w^4 \) produce the corresponding designs \(-+++ +++++ \) and \(-+ -+ +++++ +++++ \) respectively. Similarly, \(C(w^2) = 1 + w^2 \) and \(D(w^2) = 1 + w^4 + w \) produce the designs \(-+++ +++++ +++++ \) and \(-+++ +++++ +++++ \) respectively. Likewise, \(C(w^4) = 1 + w^4 \) and \(D(w^4) = 1 + w^8 + w^2 \) produce \(-+++ +++++ +++++ \) and \(-+++ +++++ +++++ \). When \(m = 19 \), it is sufficient to consider primitive roots \(w = \exp(2\pi i/19), w^k \) for \(2 \leq k \leq 9 \). For the case \(C(w) = 1 + w + w^2 + w^4 + w^7 + w^{12} \); we have \(C(w^3) = 1 + w^2 + w^4 + w^8 + w^{14} + w^5, C(w^3) = 1 + w^3 + w^6 + w^{12} + w^2 + w^{17} = w^3 C(w^2) \), and \(C(w^5) = 1 + w^5 + w^{10} + w + w^{16} + w^3 = w^5 C(w^{-2}) \), which produce the corresponding designs \(-+++ -+++ +++ +++++ +++++ +++++ +++++ \), \(--+ -+ +++++ +++++ +++++ +++++ +++++ \), and \(-+++ -++++ +++++ +++++ +++++ +++++ \). All of these three designs are of the same type and their finite sequences are equal to \(-1, 3, 3, 3, 3, 3, -1, -1, 3\). Similarly it can be shown easily that \(C(w^k) \) for \(k = 4, 6, 9 \) produces designs with the finite sequences \(3, -1, 3, -1, 3, 3, 3, 3, 3; \) for \(k = 1, 7, 8 \), it produces those with \(3, 3, 3, -1, 3, -1, 3, 3, -1 \). In general, it can be shown that designs produced by \(C(w), w^k C(w), \) and \(w^h C(w^{-1}) \), are of the same type for any integers \(k \) and \(h \).

Table II is obtained by applying this method of finding polynomials \(C(w) \) and \(D(w) \) to the previously known designs for \(m = 21, 23, \) and \(27 \).

For example, when \(m = 27 \), with primitive roots \(w^k = \exp(2\pi ki/27) \), (Table III) designs of distinct types are obtained.

Addition. The following new designs for \(M_{56}, M_{54}, \) and \(M_{62} \) with the corresponding \(C(w) \) and \(D(w) \) have been found.

When \(m = 25 \), we have

\[
C(w) = 1 + w + w^2 + w^6 + w^8 + w^{10} + w^{11} + w^{14} + w^{15},
\]
\[
D(w) = C(w^7) = 1 + w^2 + w^6 + w^8 + w^{14} + w^{17} + w^{20} + w^{23} .
\]
When $m = 27$, we have

$$C(w) = 1 + w + w^2 + w^3 + w^6 + w^{10} + w^{12} + w^{15} + w^{23},$$
$$D(w) = 1 + w + w^2 + w^5 + w^7 + w^9 + w^{10} + w^{17} + w^{20} + w^{21} + w^{23}.$$

When $m = 31$, we have

$$C(w) = 1 + w + w^2 + w^3 + w^4 + w^i + w^{13} + w^{19} + w^{23} + w^{26},$$
$$D(w) = 1 + w + w^2 + w^3 + w^6 + w^{10} + w^{12} + w^{14} + w^{15} + w^{17} + w^{18} + w^{24} + w^{26} + w^{28}.$$

Mathematics Department
State University College
Oneonta, New York 13820