On designs of maximal -matrices of order . II

Author:
C. H. Yang

Journal:
Math. Comp. **23** (1969), 201-205

MSC:
Primary 65.35

DOI:
https://doi.org/10.1090/S0025-5718-1969-0239748-1

Corrigendum:
Math. Comp. **28** (1974), 1183.

Corrigendum:
Math. Comp. **28** (1974), 1183-1184.

MathSciNet review:
0239748

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Finding maximal -matrices of order (with odd ) constructible in the standard form

() |

, where is any primitive th root of unity. Thus, all constructible by the standard form (see [4]) can be classified by the formula . Some new matrices for , were found by this method.

**[1]**H. Ehlich, ``Determinantenabschätzungen für binäre Matrizen,''*Math. Z.*, v. 83, 1964, pp. 123-132. MR**0160792 (28:4003)****[2]**C. H. Yang, ``Some designs for maximal -determinant of order ,''*Math. Comp.*, v. 20, 1966, pp. 147-148. MR**32**#5534. MR**0188093 (32:5534)****[3]**C. H. Yang, ``A construction for maximal -matrix of order 54,''*Bull. Amer. Math. Soc.*, v. 72, 1966, p. 293. MR**32**#5678. MR**0188239 (32:5678)****[4]**C. H. Yang, ``On designs of maximal -matrices of order ,''*Math. Comp.*, v. 22, 1968, pp. 174-180. MR**0225476 (37:1069)****[5]**J. Williamson, ``Hadamard's determinant theorem and the sum of four squares,''*Duke Math. J.*, v. 11, 1944, pp. 65-81. MR**5**, 169. MR**0009590 (5:169g)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.35

Retrieve articles in all journals with MSC: 65.35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0239748-1

Article copyright:
© Copyright 1969
American Mathematical Society