On designs of maximal -matrices of order . II

Author:
C. H. Yang

Journal:
Math. Comp. **23** (1969), 201-205

MSC:
Primary 65.35

DOI:
https://doi.org/10.1090/S0025-5718-1969-0239748-1

Corrigendum:
Math. Comp. **28** (1974), 1183.

Corrigendum:
Math. Comp. **28** (1974), 1183-1184.

MathSciNet review:
0239748

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Finding maximal -matrices of order (with odd ) constructible in the standard form

() |

, where is any primitive th root of unity. Thus, all constructible by the standard form (see [4]) can be classified by the formula . Some new matrices for , were found by this method.

**[1]**Hartmut Ehlich,*Determinantenabschätzungen für binäre Matrizen*, Math. Z.**83**(1964), 123–132 (German). MR**0160792**, https://doi.org/10.1007/BF01111249**[2]**C. H. Yang,*Some designs for maximal (+1,-1)-determinant of order 𝑛≡2(𝑚𝑜𝑑4)*, Math. Comp.**20**(1966), 147–148. MR**0188093**, https://doi.org/10.1090/S0025-5718-1966-0188093-9**[3]**C. H. Yang,*A construction for maximal (+1,-1)-matrix of order 54*, Bull. Amer. Math. Soc.**72**(1966), 293. MR**0188239**, https://doi.org/10.1090/S0002-9904-1966-11497-0**[4]**C. H. Yang,*On designs of maximal (+1,-1)-matrices of order 𝑛≡2(𝑚𝑜𝑑4)*, Math. Comp.**22**(1968), 174–180. MR**0225476**, https://doi.org/10.1090/S0025-5718-1968-0225476-4**[5]**John Williamson,*Hadamard’s determinant theorem and the sum of four squares*, Duke Math. J.**11**(1944), 65–81. MR**0009590**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.35

Retrieve articles in all journals with MSC: 65.35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0239748-1

Article copyright:
© Copyright 1969
American Mathematical Society