On a Theorem of Piatetsky-Shapiro and Approximation of Multiple Integrals

By Seymour Haber and Charles F. Osgood

Abstract. Let \(f \) be a function of \(s \) real variables which is of period 1 in each variable, and let the integral \(I \) of \(f \) over the unit cube in \(s \)-space be approximated by

\[
Q(f) = \frac{1}{N} \sum_{r=1}^{N} f(rx)
\]

(where \(x = x(N) \) is a point in \(s \)-space). For certain classes of \(f \)'s, defined by conditions on their Fourier coefficients, it is shown using methods of N. M. Korobov, that \(x \)'s can be found for which error bounds of the form \(|I(f) - Q(f)| < K(f)N^{-p} \) will be true. However, for the class of all \(f \)'s with absolutely convergent Fourier series, it is shown that there are no \(x \)'s for which a bound of the form \(|I(f) - Q(f)| = O(F(N)) \) will hold, for any \(F(N) \) which approaches zero as \(N \) goes to infinity.

In his book *Number-Theoretic Methods of Approximate Analysis*, N. M. Korobov quotes the following result of I. I. Piatetsky-Shapiro [1]:

Theorem. Let \(A_s \) denote the class of all functions of \(s \) real variables that have period 1 in each variable and have an absolutely convergent Fourier series:

\[
f(x) = \sum_{m_1, \ldots, m_s = -\infty}^{\infty} c(m) \exp(x \cdot m)
\]

(boldface letters denote \(s \)-tuples of real numbers; \(\exp a = e^{2\pi ia} \)). Then for any \(f \in A_s \) and any positive integer \(N \) there is a \(\theta \) such that

\[
\left| \int_0^1 \cdots \int_0^1 f(x)dx - \frac{1}{N} \sum_{r=1}^{N} f(r\theta) \right| < C \frac{\log N}{N}
\]

where \(C = C(f) \).

Though Korobov takes up this theorem in connection with methods of approximate evaluation of multiple integrals, the theorem itself does not provide such a method, as \(\theta \) depends on \(f \). The question then arises whether a \(\theta(N) \) exists which will make (2) true for all \(f \in A_s \). We answer this in the negative; but we do show that there are \(\theta \)'s which allow a stronger statement than (2) for some considerable subsets of \(A_s \).

We will denote the unit cube in \(s \)-dimensional Euclidean space by \(G_s \).

Theorem 1. If \(N_1, N_2, \ldots \) is an increasing sequence of positive integers, \(\theta^{(1)}, \theta^{(2)}, \ldots \) a sequence of \(s \)-tuples of real numbers, and \(F(n) \) any positive decreasing function such that \(F(n) \to 0 \) as \(n \to \infty \), then there is an \(f \in A_s \) such that

\[
\left| \int_{G_s} f - \frac{1}{N} \sum_{r=1}^{N} f(r\theta^{(i)}) \right| / F(N_i)
\]

is unbounded as \(i \to \infty \).

Received May 8, 1968.
Proof. A_* is a Banach space, if, with the expansion (1), we define

$$
\|f\| = \sum_{m_1, \ldots, m_s = -\infty}^{\infty} |c(m)|.
$$

Define the linear functional L_i, $i = 1, 2, \ldots$, by

$$
L_i(f) = \frac{1}{F(N_i)} \left(\int_{a_i} f - \frac{1}{N_i} \sum_{r=1}^{N_i} f(r^{(i)}) \right).
$$

If the theorem does not hold, then $|L_i(f)| \leq C(f)$, $i = 1, 2, \ldots$ for every $f \in A_*$, where $C(f)$ is some real number. Then by the Banach-Steinhaus Theorem (see, e.g., [2]) there is a constant K such that

$$
|L_i(f)| \leq K \|f\|
$$

for all i and all $f \in A_*$. But if we choose $m^{(i)}$, for each i, in such a manner that

$$
m^{(i)} \cdot \theta^{(i)}
$$

is within $1/2N_i^2$ of an integer (and the components of $m^{(i)}$ are not all zero), and set $f_i(x) = \exp(x - m^{(i)})$, then

$$
|L_i(f_i)| = \frac{1}{N_i F(N_i)} \left| \sum_{r=1}^{N_i} \exp(r^{(i)} \cdot m^{(i)}) \right| \geq \frac{1}{2F(N_i)},
$$

contradicting (4).

If

$$
D = \sum_{m_1, \ldots, m_s = -\infty}^{\infty} d(m)
$$

is a convergent (s-tuple) series of positive constants, we shall denote by $A_*(D)$ the subset of A_* consisting of those functions having expansions (1) satisfying

$$
|c(m)| \leq Cd(m), \quad -\infty < m_1, \ldots, m_s < \infty
$$

for some number C.

Theorem 2. If D is any convergent s-tuple series of positive numbers, and N is a prime number, then there are integers a_1, a_2, \ldots, a_s between 0 and $N - 1$ such that

$$
\left| \int_{a_i} f - \frac{1}{N} \sum_{r=1}^{N} f(r \cdot a_i) \right| < \frac{K(f)}{N}
$$

for all $f \in A_*(D)$.

Proof. Using the expansion (1), we see that

$$
\int_{a_i} f = c(0, \ldots, 0) while
$$

$$
\frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} a\right) = \sum_{m_1, \ldots, m_s = -\infty}^{\infty} c(m) \left(\frac{1}{N} \sum_{r=1}^{N} \exp\left(\frac{r}{N} a \cdot m\right) \right)
$$

$$
= c(0, \ldots, 0) + \sum_{m_1, \ldots, m_s = -\infty}^{\infty} c(m) \delta_N(a \cdot m)
$$

where $\delta_N(n)$ is 1 if N divides n and is 0 otherwise, and the prime on the sum indicates that the term with $m_1 = m_2 = \cdots = m_s = 0$ is omitted. Therefore

$$
\left| \int_{a_i} f - \frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} a\right) \right| \leq \sum_{m_1, \ldots, m_s = -\infty}^{\infty} |c(m)| \delta_N(a \cdot m)
$$

$$
\leq C \sum_{m_1, \ldots, m_s = -\infty}^{\infty} d(m) \delta_N(a \cdot m).
$$
Let us now look at the average, for given \(N \) and \(\mathbf{m} \), of \(\delta_N(\mathbf{a} \cdot \mathbf{m}) \) over all \(s \)-tuples \(\mathbf{a} \) of integers from 0 to \(N - 1 \). Choosing \(a_j \) such that \(m_j \neq 0 \), we see that for any choice of \(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_s \) there is just one value of \(a_j \) making \(\delta = 1 \)—since \(N \) is a prime—and \(N - 1 \) values for which \(\delta = 0 \). Thus for each \(\mathbf{m} \),

\[
\text{av} \delta_N(\mathbf{a} \cdot \mathbf{m}) = 1/N.
\]

It follows that

\[
\min_{0 \leq a_1, \ldots, a_s \leq N-1} \left| \int \mathcal{G}_s \ f - \frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} \right) \mathbf{a} \right| \\
\leq \text{av} C \sum_{m_1, \ldots, m_s = -\infty}^{\infty} d(\mathbf{m}) \delta_N(\mathbf{a} \cdot \mathbf{m}) \\
\leq \frac{C}{N} \sum_{m_1, \ldots, m_s = -\infty}^{\infty} d(\mathbf{m}),
\]

proving the theorem.

This result has consequences for the numerical integration of functions satisfying certain stronger conditions. If, following Korobov, we set

\[
\overline{m} = \max (|m|, 1), \quad ||\mathbf{m}|| = \overline{m}_1 \cdot \overline{m}_2 \cdot \cdots \cdot \overline{m}_s,
\]

and denote by \(E_s^\alpha \), for \(\alpha > 1 \), the set of functions having an expansion (1) that satisfies \(|c(\mathbf{m})| \leq C(f)||\mathbf{m}||^{-\alpha} \), we have

Corollary 1. For each prime number \(P \) and for any positive number \(\epsilon \) there are integers \(a_1, a_2, \ldots, a_s \) such that for any \(f \in E_s^\alpha \)

\[
\left| \int \mathcal{G}_s \ f - \frac{1}{P} \sum_{r=1}^{P} f\left(\frac{r}{P} \right) \mathbf{a} \right| < K(f) P^{-\alpha - \epsilon}.
\]

Proof. Set \(\beta = \max (\alpha - \epsilon, 1) \) and set

\[
g(x) = \sum_{m_1, \ldots, m_s = -\infty}^{\infty} ||\mathbf{m}||^{-\alpha/\beta} \exp (\mathbf{m} \cdot \mathbf{x});
\]

and let \(\mathbf{a} \) be the \(s \)-tuple of Theorem 2. Since \(\sum t^\beta \leq (\sum t)^\beta \) whenever \(\beta \geq 1 \) and the t's are nonnegative, the quantity

\[
\sum_{m_1, \ldots, m_s = -\infty}^{\infty} |c(\mathbf{m})| \delta_P(\mathbf{a} \cdot \mathbf{m})
\]

for \(f \) is no greater than \(C(f) \) times the \(\beta \)th power of the same quantity for \(g \); and the latter is less than or equal to \(K(g)/P \).

Korobov obtains a sharper result than this; where we have \(P^{-\alpha + \epsilon} \) in (9) he has \(P^{-\alpha} \log^\beta P \) for certain values of \(\beta \). If we further restrict the class of functions we obtain a result that does not follow directly from Korobov's theorems:

Let \(L_s^\alpha \), for \(\alpha > 1 \), be the class of all functions having an expansion (1) that satisfies

\[
|c(\mathbf{m})| \leq C(||\mathbf{m}|| \log^{1+\epsilon} ||\mathbf{m}||)^{-\alpha}
\]

for some \(C = C(f) \) and \(\epsilon = \epsilon(f) > 0 \). Then we have, by a proof similar to that of the above corollary,
Corollary 2. For each prime number \(P \) there is a set of integers \(a_1, \ldots, a_s \) such that for any \(f \in L_s^a \)

\[
\left| \int_{G_s} f - \frac{1}{P} \sum_{r=1}^{P} f\left(\frac{r}{P} \cdot a \right) \right| < \frac{K(f)}{P^\alpha}.
\]

National Bureau of Standards
Washington, D. C. 20234

1. N. M. Korobov, Number-Theoretic Methods of Approximate Analysis, Fizmatgiz, Moscow, 1963, p. 85. (Russian) MR 28 #716.