On the computation of a bivariate -distribution

Authors:
D. E. Amos and W. G. Bulgren

Journal:
Math. Comp. **23** (1969), 319-333

MSC:
Primary 65.25; Secondary 62.00

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242348-0

MathSciNet review:
0242348

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The cumulative bivariate -distribution associated with random variables , is considered where , are bivariate normal with correlation coefficient and is an independent random variable with degrees of freedom. Representations in terms of series and simple, one-dimensional quadratures are presented together with efficient computational procedures for the special functions used in numerical evaluation.

**[1]**C. W. Dunnett, ``A multiple comparison procedure for comparing several treatments with a control,''*J. Amer. Statist. Assoc.*, v. 50, 1955, pp. 1096-1121.**[2]**C. W. Dunnett & M. Sobel, ``A bivariate generalization of Student's -distribution, with tables for certain special cases,''*Biometrika*, v. 41, 1954, pp. 153-169. MR**15**, 885. MR**0061793 (15:885f)****[3]**C. W. Dunnett & M. Sobel, ``Approximation to the probability integral and certain percentage points of a multivariate analogue of Student's -distribution,''*Biometrika*, v. 42, 1955, pp. 258-260. MR**16**, 840. MR**0068169 (16:840l)****[4]**A. Erdélyi, et al.,*Higher Transcendental Functions*, Vol. 1, McGraw-Hill, New York, 1953. MR**15**, 419.**[5]**A. Erdélyi, et al.,*Higher Transcendental Functions*, Vol. 2, McGraw-Hill, New York, 1953. MR**15**, 419.**[6]**A. Erdélyi, et al.,*Tables of Integral Transforms*, Vol. 1, McGraw-Hill, New York, 1954. MR**15**, 868.**[7]**W. Gautschi, ``Computational aspects of three-term recurrence relations,''*SIAM Rev.*, v. 9, 1967, pp. 24-82. MR**35**#3927. MR**0213062 (35:3927)****[8]**S. S. Gupta & M. Sobel, ``On a statistic which arises in selection and ranking problems,''*Ann. Math. Statist.*, v. 28, 1957, pp. 957-967. MR**20**#366. MR**0093846 (20:366)****[9]**S. S. Gupta, ``Probability integrals of multivariate normal and multivariate ,''*Ann. Math. Statist.*, v. 34, 1963, pp. 792-828. MR**27**#2048.**[10]**S. John, ``On the evaluation of the probability integral of the multivariate -distribution,''*Biometrika*, v. 48, 1961, pp. 409-417. MR**26**#1951. MR**0144406 (26:1951)****[11]**S. John, ``Methods for the evaluation of probabilities of polygonal and angular regions when the distribution is bivariate ,'' Sankhyā, Ser. A, v. 26, 1964, pp. 47-54. MR**33**#6736. MR**0198581 (33:6736)****[12]**P. R. Krishnaiah & J. V. Armitage,*Percentage Points of the Multivariate -Distribution*, ARL 65-199, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, 1965.**[13]**N. N. Lebedev,*Special Functions and Their Applications*, Fizmatgiz, Moscow, 1963; English transl., Prentice-Hall, Englewood Cliffs, N. J., 1965. MR**30**#4987; MR**30**#4988. MR**0174795 (30:4988)****[14]**D. B. Owen, ``A special case of a bivariate non-central -distribution,''*Biometrika*, v. 52, 1965, pp. 437-147. MR**34**#5190. MR**0205361 (34:5190)****[15]**K. C. S. Pillai & K. V. Ramachandran, ``On the distribution of the ratio of the th observation in an ordered sample from a normal population to an independent estimate of the standard deviation,''*Ann. Math. Statist.*, v. 25, 1954, pp. 565-572. MR**16**, 270. MR**0064356 (16:270d)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25,
62.00

Retrieve articles in all journals with MSC: 65.25, 62.00

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242348-0

Article copyright:
© Copyright 1969
American Mathematical Society