Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Chebyshev approximations for the exponential integral $ {\rm Ei}(x)$


Authors: W. J. Cody and Henry C. Thacher
Journal: Math. Comp. 23 (1969), 289-303
MSC: Primary 65.25
DOI: https://doi.org/10.1090/S0025-5718-1969-0242349-2
MathSciNet review: 0242349
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The computation of the exponential integral $ Ei(x)$, $ x > 0$, using rational Chebyshev approximations is discussed. The necessary approximations are presented in well-conditioned forms for the intervals $ (0,6]$, $ [6,12]$, $ [12,24]$ and $ [24,\infty )$. Maximal relative errors are as low as from $ 8 \times {10^{ - 19}}to2 \times {10^{ - 21}}$. In addition, the value of the zero of $ Ei(x)$ is presented to 30 decimal places.


References [Enhancements On Off] (What's this?)

  • [1] F. E. Harris, ``Tables of the exponential integral $ Ei(x)$, Math. Comp., v. 11, 1957, pp. 9-16. MR 19, 464. MR 0088069 (19:464b)
  • [2] J. Miller & R. P. Hurst, ``Simplified calculation of the exponential integral,'' Math. Comp., v. 12, 1958, pp. 187-193. MR 21 #3103. MR 0104348 (21:3103)
  • [3] C. W. Clenshaw, Chebyshev Series for Mathematical Functions, National Physical Laboratory Mathematical Tables, vol. 5, Her Majesty's Stationery Office, London, 1962. MR 26 #362. MR 0142793 (26:362)
  • [4] W. J. Cody & H. C. Thacher, Jr., ``Rational Chebyshev approximations for the exponential integral $ {E_1}(x)$,'' Math. Comp., v. 22, 1968, pp. 641-649.
  • [5] W. Gautschi, ``Computation of successive derivatives of $ f(z)/z$,'' Math. Comp., v. 20, 1966, pp. 209-214. MR 33 #3442. MR 0195239 (33:3442)
  • [6] R. B. Dingle, ``Asymptotic expansions and converging factors. I. General theory and basic converging factors,'' Proc. Roy. Soc. London Ser. A, v. 244, 1958, pp. 456-475. MR 21 #2145. MR 0103373 (21:2145)
  • [7] R. B. Dingle, ``Asymptotic expansions and converging factors. II. Error, Dawson, Fresnel, exponential, sine and cosine, and similar integrals,'' Proc. Roy. Soc. London Ser. A, v. 244, 1958, pp. 476-483. MR 21 #2146. MR 0103374 (21:2146)
  • [8] F. D. Murnaghan & J. W. Wrench, Jr., The Converging Factor for the Exponential Integral, David Taylor Model Basin Applied Mathematics Laboratory Report 1535, 1963.
  • [9] D. van Z. Wadsworth, ``Improved asymptotic expansion for the exponential integral with positive argument,'' Math. Comp., v. 19, 1965, pp. 327-328.
  • [10] S. Hitotumatu, ``Some considerations on the best-fit polynomial approximations. II,'' Comment. Math. Univ. St. Paul, v. 14, 1966, pp. 71-83. MR 33 #8085. MR 0199945 (33:8085)
  • [11] W. J. Cody & J. Stoer, ``Rational Chebyshev approximations using interpolation,'' Numer. Math., v. 9, 1966, pp. 177-188.
  • [12] W. J. Cody, W. Fraser & J. F. Hart, ``Rational Chebyshev approximation using linear equations,'' Numer. Math., v. 12, 1968, pp. 242-251. MR 1553964
  • [13] W. J. Cody & H. C. Thacher, Jr., ``Rational Chebyshev approximations for Fermi-Dirac integrals of orders $ - 1/2$, $ 1/2$ and $ 3/2$,'' Math. Comp., v. 21, 1967, pp. 30-40.
  • [14] J. R. Rice, ``On the conditioning of polynomial and rational forms,'' Numer. Math., v. 7, 1965, pp. 426-435. MR 32 #6710. MR 0189283 (32:6710)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1969-0242349-2
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society