Integration formulae involving derivatives

Author:
T. N. L. Patterson

Journal:
Math. Comp. **23** (1969), 411-412

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242371-6

Corrigendum:
Math. Comp. **24** (1970), 243.

MathSciNet review:
0242371

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method, developed by Hammer and Wicke, for deriving high precision integration formulae involving derivatives is modified. It is shown how such formulae may be simply derived in terms of well-known polynomials.

**[1]**A. H. Stroud and D. D. Stancu,*Quadrature formulas with multiple Gaussian nodes*, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.**2**(1965), 129–143. MR**0179940****[2]**Preston C. Hammer and Howard H. Wicke,*Quadrature formulas involving derivatives of the integrand*, Math. Comput.**14**(1960), 3–7. MR**0110191**, https://doi.org/10.1090/S0025-5718-1960-0110191-0**[3]**George Struble,*Tables for use in quadrature formulas involving derivatives of the integrand*, Math. Comput.**14**(1960), 8–12. MR**0110192**, https://doi.org/10.1090/S0025-5718-1960-0110192-2**[4]**Vladimir Ivanovich Krylov,*Approximate calculation of integrals*, Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962, 1962. MR**0144464****[5]**A. H. Stroud and Don Secrest,*Gaussian quadrature formulas*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0202312**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242371-6

Article copyright:
© Copyright 1969
American Mathematical Society