A general algorithm for nonnegative quadrature formulas
Author:
M. Wayne Wilson
Journal:
Math. Comp. 23 (1969), 253-258
MSC:
Primary 65.55
DOI:
https://doi.org/10.1090/S0025-5718-1969-0242374-1
MathSciNet review:
0242374
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A general algorithm is presented for determining numerical integration formulas exact for an arbitrary finite set of continuous functions defined on a compact set, involving nonnegative combinations of function values at a finite number of points in the set. Examples are given.
- [1] P. J. Davis, ``A construction of nonnegative approximate quadratures,'' Math. Comp., v. 21, 1967, pp. 578-587. MR 36 #5584. MR 0222534 (36:5584)
- [2] P. J. Davis, ``Approximate integration rules with nonnegative weights,'' in Lecture Series in Differential Equations, Georgetown University, Washington, D. C., 1967.
- [3] W. Fraser & M. W. Wilson, ``Remarks on the Clenshaw-Curtis quadrature scheme,'' SI AM Rev., v. 8, 1966, pp. 322-327. MR 34 #3784. MR 0203937 (34:3784)
- [4] W. W. Rogosinski, ``On non-negative polynomials,'' Ann. Univ. Sci. Budapest, Eötvös Sect. Math., v. 3-4, 1961, pp. 253-280. MR 26 #3843. MR 0146321 (26:3843)
- [5] A. H. Stroud & D. Secrest, Gaussian Quadrature Formula, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR 34 #2185. MR 0202312 (34:2185)
- [6] V. Tchakaloff, ``Formules de cubatures mécaniques à coefficients non-négatifs,'' Bull. Sci. Math., (2) v. 81, 1957, pp. 123-134. MR 20 #1145. MR 0094632 (20:1145)
- [7] M. W. Wilson, Geometric Aspects of Quadratures with Non-Negative Weights, Ph.D. Thesis, Brown University, 1968.
- [8] M. W. Wilson, Approximation of Non-Negative Continuous Linear Functionals, Brown University Technical Report, May, 1968.
Retrieve articles in Mathematics of Computation with MSC: 65.55
Retrieve articles in all journals with MSC: 65.55
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1969-0242374-1
Article copyright:
© Copyright 1969
American Mathematical Society