Approximate solutions for mixed boundary value problems by finite-difference methods

Author:
V. Thuraisamy

Journal:
Math. Comp. **23** (1969), 373-386

MSC:
Primary 65.66

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242390-X

MathSciNet review:
0242390

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For mixed boundary value problems of Poisson and/or Laplace's equations in regions of the Euclidean space , , finite-difference analogues are formulated such that the matrix of the resulting system is of positive type. Discretization errors are established in a manner to reveal the continuous dependence of the rate of convergence on the smoothness of the solution. Isolated data singularities and their application to exterior problems are also discussed.

**[1]**Eduard Batschelet,*Über die numerische Auflösung von Ranswertproblemen bei elliptischen partiellen Differentialgleichungen*, Z. Angew. Math. Physik**3**(1952), 165–193 (German). MR**0060912****[2]**J. H. Bramble and B. E. Hubbard,*Approximation of solutions of mixed boundary value problems for Poisson’s equation by finite differences*, J. Assoc. Comput. Mach.**12**(1965), 114–123. MR**0171384**, https://doi.org/10.1145/321250.321260**[3]**James H. Bramble and Bert E. Hubbard,*New monotone type approximations for elliptic problems*, Math. Comp.**18**(1964), 349–367. MR**0165702**, https://doi.org/10.1090/S0025-5718-1964-0165702-X**[4]**J. H. Bramble & B. E. Hubbard, ``Discretization error in the classical Dirichlet problem for Laplace's equation by finite difference methods,'' Technical Note BN-484, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1967.**[5]**J. H. Bramble, B. E. Hubbard, and M. Zlámal,*Discrete analogues of the Dirichlet problem with isolated singularities*, SIAM J. Numer. Anal.**5**(1968), 1–25. MR**0239770**, https://doi.org/10.1137/0705001**[6]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[7]**Donald Greenspan,*On the numerical solution of problems allowing mixed boundary conditions*, J. Franklin Inst.**277**(1964), 11–30. MR**0162370**, https://doi.org/10.1016/0016-0032(64)90035-3**[8]**Bert Hubbard,*Remarks on the order of convergence in the discrete Dirichlet problem*, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 21–34. MR**0211622****[9]**Pentti Laasonen,*On the behavior of the solution of the Dirichlet problem at analytic corners*, Ann. Acad. Sci. Fenn. Ser. A. I.**1957**(1957), no. 241, 13. MR**0091405****[10]**Pentti Laasonen,*On the solution of Poisson’s difference equation*, J. Assoc. Comput. Mach.**5**(1958), 370–382. MR**0121999**, https://doi.org/10.1145/320941.320951**[11]**F. D. Gakhov,*Boundary value problems*, Translation edited by I. N. Sneddon, Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. MR**0198152****[12]**R. V. Viswanathan,*Solution of Poisson’s equation by relaxation method—normal gradient specified on curved boundaries*, Math. Tables Aids Comput.**11**(1957), 67–78. MR**0086396**, https://doi.org/10.1090/S0025-5718-1957-0086396-4**[13]**E. A. Volkov, ``On the method of nets for a boundary problem with an oblique and a normal derivative,''*Ž. Vyčisl. Mat. Mat. Fiz.*, v. 2, 1962 =*U.S.S.R. Comput. Math, and Math. Phys.*, v. 2, 1962, p. 705.**[14]**J. A. Voytuk and R. C. MacCamy,*Mixed boundary-value problems in the plane*, Proc. Amer. Math. Soc.**16**(1965), 276–280. MR**0173100**, https://doi.org/10.1090/S0002-9939-1965-0173100-0**[15]**J. L. Walsh and David Young,*On the degree of convergence of solutions of difference equations to the solution of the Dirichlet problem*, J. Math. Physics**33**(1954), 80–93. MR**0060908****[16]**Wolfgang R. Wasow,*The accuracy of difference approximations to plane Dirichlet problems with piecewise analytic boundary values*, Quart. Appl. Math.**15**(1957), 53–63. MR**0088800**, https://doi.org/10.1090/S0033-569X-1957-88800-5**[17]**Neil M. Wigley,*Asymptotic expansions at a corner of solutions of mixed boundary value problems*, J. Math. Mech.**13**(1964), 549–576. MR**0165227****[18]**Neil M. Wigley,*On the convergence of discrete approximations to solutions of mixed boundary value problems*, SIAM J. Numer. Anal.**3**(1966), 372–382. MR**0205500**, https://doi.org/10.1137/0703032

Retrieve articles in *Mathematics of Computation*
with MSC:
65.66

Retrieve articles in all journals with MSC: 65.66

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0242390-X

Article copyright:
© Copyright 1969
American Mathematical Society