Applications of Hilbert transform theory to numerical quadrature
Authors:
W. E. Smith and J. N. Lyness
Journal:
Math. Comp. 23 (1969), 231252
MSC:
Primary 65.55; Secondary 44.00
MathSciNet review:
0251906
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Some finite integrals are difficult to evaluate numerically because the integrand has a high peak or contains a rapidly oscillating function as a factor. If the integrand is an analytic function Cauchy's theorem may be applied to replace the integral by a contour integral, the path being chosen to avoid singularities of the integrand, together with a possible residue contribution. If the integrand has branch singularities in the complex plane close to the interval of integration, the direct application of Cauchy's theorem is not practical. In this paper we show how the theory of Hilbert transforms may be applied to replace the integrand by a different complex valued function whose real part coincides with the integrand on the real line, but which has no singularities in the upper half plane. Using these transformations, integrands whose difficult behavior arises from a factor whose Hilbert transform is known analytically may be treated by carrying out a contour integral of a different function and taking the real part of the result. It is shown by means of examples that such a procedure may result in significant savings in terms of computational effort.
 [1]
Milton
Abramowitz, On the practical evaluation of integrals, J. Soc.
Indust. Appl. Math. 2 (1954), 20–35. MR 0062517
(15,992a)
 [2]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [3]
F.
L. Bauer, H.
Rutishauser, and E.
Stiefel, New aspects in numerical quadrature, Proc. Sympos.
Appl. Math., Vol. XV, Amer. Math. Soc., Providence, R.I., 1963,
pp. 199–218. MR 0174177
(30 #4384)
 [4]
Philip
J. Davis and Philip
Rabinowitz, Numerical integration, Blaisdell Publishing Co.
Ginn and Co., Waltham, Mass.Toronto, Ont.London, 1967. MR 0211604
(35 #2482)
 [5]
A.
Erdélyi, W.
Magnus, F.
Oberhettinger, and F.
G. Tricomi, Tables of integral transforms. Vol. I, McGrawHill
Book Company, Inc., New YorkTorontoLondon, 1954. Based, in part, on notes
left by Harry Bateman. MR 0061695
(15,868a)
 [6]
T.
Hȧvie, On a modification of Romberg’s algorithm,
Nordisk Tidskr. InformationsBehandling 6 (1966),
24–30. MR
0195257 (33 #3460)
 [7]
J.
Ross Macdonald and Malcolm
K. Brachman, Linearsystem integral transform relations, Rev.
Mod. Phys. 28 (1956), 393–422. MR 0083063
(18,652c)
 [8]
W. M. McKeeman, ``Algorithm 145; adaptive numerical integration by Simpson's rule,'' Comm. ACM, v. 5, 1962, p. 604. See also: ``Certification of algorithm 145; adaptive numerical integration by Simpson's rule,'' Comm. ACM, v. 6, 1963, pp. 167168.
 [9]
N.
I. Muskhelishvili, Singular integral equations. Boundary problems
of function theory and their application to mathematical physics, P.
Noordhoff N. V., Groningen, 1953. Translation by J. R. M. Radok. MR 0058845
(15,434e)
 [10]
F.
G. Tricomi, Integral equations, Pure and Applied Mathematics.
Vol. V, Interscience Publishers, Inc., New York; Interscience Publishers
Ltd., London, 1957. MR 0094665
(20 #1177)
 [11]
J.
V. Uspensky, On the convergence of quadrature
formulas related to an infinite interval, Trans. Amer. Math. Soc. 30 (1928), no. 3, 542–559. MR
1501444, http://dx.doi.org/10.1090/S00029947192815014448
 [1]
 M. Abramowitz, ``On the practical evaluation of integrals,'' J. Soc. Indust. Appl. Math., v. 2, 1954, pp. 2035.MR 15, 992. MR 0062517 (15:992a)
 [2]
 M. Abramowitz & I. A. Stegun, (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Ser., 55, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964; 3rd printing, with corrections, 1965. MR 29 #4914; MR 31 #1400. MR 0167642 (29:4914)
 [3]
 F. L. Bauer, H. Rutishauser & E. Stiefel, New Aspects in Numerical Quadrature, Proc. Sympos. Appl. Math., vol. 15, Amer. Math. Soc., Providence, R. I., 1963, pp. 199218. MR 30 #4384. MR 0174177 (30:4384)
 [4]
 P. J. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967. MR 35 #2482. MR 0211604 (35:2482)
 [5]
 A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Tables of Integral Transforms. Vols. I, II, McGrawHill, New York, 1954, 1955. MR 15, 868; MR 16, 468. MR 0061695 (15:868a)
 [6]
 T. Havie, ``On a modification of Romberg's algorithm,'' Nordisk Tidskr. InformationsBehandling, v. 6, 1966, pp. 2430. MR 33 #3460. MR 0195257 (33:3460)
 [7]
 J. R. Macdonald & M. K. Brachman, ``Linearsystem integral transform relations,'' Rev. Mod. Phys., v. 28, 1956, pp. 393422. MR 18, 652. MR 0083063 (18:652c)
 [8]
 W. M. McKeeman, ``Algorithm 145; adaptive numerical integration by Simpson's rule,'' Comm. ACM, v. 5, 1962, p. 604. See also: ``Certification of algorithm 145; adaptive numerical integration by Simpson's rule,'' Comm. ACM, v. 6, 1963, pp. 167168.
 [9]
 N. I. Muskhelishvili, Singular Integral Equations, Boundary Problems of Function Theory and Their Application to Mathematical Physics, OGIZ, Moscow, 1946; English transl., Noordhoff, Groningen, 1953. MR 8, 586; MR 15, 434. MR 0058845 (15:434e)
 [10]
 F. G. Tricomi, Integral Equations, Interscience, New York, 1957. MR 20 #1177. MR 0094665 (20:1177)
 [11]
 J. V. Uspensky, ``On the convergence of quadrature formulas related to an infinite interval,'' Trans. Amer. Math. Soc., v. 30, 1928, pp. 542559. MR 1501444
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.55,
44.00
Retrieve articles in all journals
with MSC:
65.55,
44.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196902519069
PII:
S 00255718(1969)02519069
Article copyright:
© Copyright 1969
American Mathematical Society
