

On p. 289, in Formula 800.07, the upper limit in the first integral should be 1 instead of K, and the third term in the third line should be $-\pi K'/2$ instead of $+\pi K'/2$.

Henry E. Fettis

Applied Mathematics Research Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433

In Volume II, on p. 350, in the denominator of the right member of Eq. 19.3(7), for $2^{\lambda+\mu}$, read $2^{\lambda+\mu+1}$.

Van E. Wood

Battelle Memorial Institute
Columbus, Ohio 43201

On p. 294, the right member of Eq. 3.248(1) should read

$$\frac{1}{\nu} B\left(\frac{\mu}{\nu}, \frac{1}{2} - \frac{\mu}{\nu}\right) \quad [\text{Re } \nu > \text{Re } 2\mu > 0]$$

instead of

$$2^{2\mu/\nu} B(\nu - 2\mu, \mu) \quad [\nu > 2\mu].$$

This error has been reproduced from the tables of Bierens de Haan. (See the following erratum notice.)

MURLAN S. CORRINGTON

Applied Research
Radio Corporation of America
Camden, New Jersey 08102

Editorial note: For further corrections, see Math. Comp., v. 22, 1968, pp. 903–906, MTE 428.

On p. 325 the right side of Formula 6 in Article 3.411 should read

\[\Gamma(\nu) \Phi(\beta, \nu, \mu), \]

where

\[\Phi(\beta, \nu, \mu) = \sum_{n=0}^{\infty} (n + \mu)^{-\beta} n, \]

according to the definition in Article 9.55, on p. 1075.

This confusion apparently arose from the authors’ use of \(\Phi(\alpha, \gamma; z) \) to denote the confluent hypergeometric function \({}_1F_1(\alpha, \gamma; z) \) in Article 9.21, on p. 1058.

HENRY E. FETTIS

Applied Mathematics Research Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433

On p. 48, in Table 21, the right member of Eq. 9 should read

\[\frac{1}{q} B\left(\frac{p}{q}, \frac{1}{2} - \frac{p}{q}\right) \quad [\text{Re } q > \text{Re } 2p > 0] \]

instead of

\[2^{2p/q} B(q - 2p, p) \quad [q > 2p]. \]

MURLAN S. CORRINGTON

Applied Research
Radio Corporation of America
Camden, New Jersey 08102