Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 23 (1969), 443466
Fulltext PDF Free Access
References 
Additional Information
 [1]
Cecil
Hastings Jr., Approximations for digital computers, Princeton
University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and
James P. Wong, Jr. MR 0068915
(16,963e)
 [2]
A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, second edition, AddisonWesley Publishing Co., Inc., Reading, Mass., 1962. (See Math. Comp., v. 17, 1963, pp. 302303, RMT 33.)
 [3]
L.
A. Lyusternik, O.
A. Chervonenkis, and A.
R. Yanpol′skii, Handbook for computing elementary
functions, Translated from the Russian by G. J. Tee. Translation
edited by K. L. S tewart, Pergamon Press, OxfordEdinburgNew York, 1965.
MR
0183102 (32 #584)
 [4]
Charles L. Lawson, Bibliography of Recent Publications in Approximation Theory with Emphasis on Computer Applications, Technical Memorandum No. 201, Jet Propulsion Laboratory, Pasadena, Calif., 16 August 1968.
 [1]
Richard
Savage and Eugene
Lukacs, Tables of inverses of finite segments of the Hilbert
matrix, Contributions to the solution of systems of linear equations
and the determination of eigenvalues, National Bureau of Standards Applied
Mathematics Series No. 39, U. S. Government Printing Office, Washington, D.
C., 1954, pp. 105–108. MR 0068303
(16,861d)
 [2]
Richard B. Smith, Table of Inverses of Two IllConditioned Matrices, Westinghouse Electric Corporation, Bettis Atomic Power Division, Pittsburgh, Pa., 1957. (See MTAC, v. 11, 1957, p. 216, RMT 95.)
 [1]
Morio
Onoe, Modified quotients of cylinder
functions, Math. Tables Aids Comput. 10 (1956), 27–28. MR 0076107
(17,847a), http://dx.doi.org/10.1090/S0025571819560076107X
 [2]
Morio
Onoe, Tables of modified quotients of Bessel functions of the first
kind for real and imaginary arguments, Columbia University Press, New
York, 1958. MR
0095590 (20 #2092)
 [1]
J. E. Kilpatrick, Shigetoshi Katsura & Yuji Inoue, Tables of Integrals of Products of Bessel Functions, Rice University, Houston, Texas and Tôhoku University, Sendai, Japan, 1966. (See Math. Comp., v. 21, 1967, p. 267, UMT 27.)
 [1]
Daniel
Shanks, On Gauss’s class number
problems, Math. Comp. 23 (1969), 151–163. MR 0262204
(41 #6814), http://dx.doi.org/10.1090/S00255718196902622041
 [2]
K. E. Kloss et al., Class Number of Primes of the Form , RMT 10, Math. Comp., v. 23, 1969, pp. 213214.
 [1]
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904.
 [2]
L. G. Diehl & J. H. Jordan, A Table of Gaussian Primes, UMT 19, Math. Comp., v. 21, 1967, pp. 260262.
 [3]
Daniel
Shanks, On the conjecture of Hardy &
Littlewood concerning the number of primes of the form
𝑛²+𝑎, Math. Comp. 14 (1960), 320–332.
MR
0120203 (22 #10960), http://dx.doi.org/10.1090/S00255718196001202036
 [4]
Daniel
Shanks and Larry
P. Schmid, Variations on a theorem of Landau.
I, Math. Comp. 20 (1966), 551–569. MR 0210678
(35 #1564), http://dx.doi.org/10.1090/S00255718196602106781
 [1]
Marvin Wunderlich, Tables of Fibonacci Entry Points, The Fibonacci Association, San Jose State College, San Jose, Calif., January 1965. (For a joint review of this and the following reference, see Math. Comp., v. 20, 1966, pp. 618619, RMT 87 and 88.)
 [2]
Douglas Lind, Robert A. Morris & Leonard D. Shapiro, Tables of Fibonacci Entry Points, Part Two, The Fibonacci Association, San Jose State College, San Jose, Calif., September 1965.
 [3]
John
D. Fulton and William
L. Morris, On arithmetical functions related to the Fibonacci
numbers, Acta Arith. 16 (1969/1970), 105–110.
MR
0250962 (40 #4193)
 [4]
D.
D. Wall, Fibonacci series modulo 𝑚, Amer. Math.
Monthly 67 (1960), 525–532. MR 0120188
(22 #10945)
 [5]
Dov
Jarden, Recurring sequences: A collection of papers, Second
edition. Revised and enlarged, including numerous new factorizations of
Fibonacci and Lucas numbers by John Brillhart, Riveon Lematematika,
Jerusalem (Israel), 1966. MR 0197383
(33 #5548)
 [1]
S. W. Golomb, Polyominoes, Charles Scribner's Sons, New York, 1965, pp. 116118.
 [1]
 Cecil Hastings, Jr., Jeanne T. Hayward & James P. Wong, Jr., Approximations for Digital Computers, Princeton Univ. Press, Princeton, N. J., 1955. (See MTAC, v. 9, 1955, pp. 121123, RMT 56.) MR 0068915 (16:963e)
 [2]
 A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, second edition, AddisonWesley Publishing Co., Inc., Reading, Mass., 1962. (See Math. Comp., v. 17, 1963, pp. 302303, RMT 33.)
 [3]
 L. A. Lyusternik, O. A. Chervonenkis & A. R. Yanpol'skii, Handbook for Computing Elementary Functions, Pergamon Press, New York, 1965. (See Math. Comp., v. 20, 1966, pp. 452453, RMT 64.) MR 0183102 (32:584)
 [4]
 Charles L. Lawson, Bibliography of Recent Publications in Approximation Theory with Emphasis on Computer Applications, Technical Memorandum No. 201, Jet Propulsion Laboratory, Pasadena, Calif., 16 August 1968.
 [1]
 Richard Savage & Eugene Lukacs, ``Tables of inverses of finite segments of the Hilbert matrix,'' in Contributions to the Solution of Systems of Linear Equations and the Determination of Eigenvalues, NBS Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 105108. MR 0068303 (16:861d)
 [2]
 Richard B. Smith, Table of Inverses of Two IllConditioned Matrices, Westinghouse Electric Corporation, Bettis Atomic Power Division, Pittsburgh, Pa., 1957. (See MTAC, v. 11, 1957, p. 216, RMT 95.)
 [1]
 M. Onoe, ``Formulae and tables, the modified quotients of cylinder functions,'' Report of the Institute of Industrial Science, University of Tokyo, v. 4, 1955, pp. 122. (See MTAC, v. 10, 1956, p. 53, RMT 29.) MR 0076107 (17:847a)
 [2]
 M. Onoe, Tables of Modified Quotients of Bessel Functions of the First Kind for Real and Imaginary Arguments, Columbia Univ. Press, New York, 1958. (See MTAC, v. 13, 1959, p. 131, RMT 22.) MR 0095590 (20:2092)
 [1]
 J. E. Kilpatrick, Shigetoshi Katsura & Yuji Inoue, Tables of Integrals of Products of Bessel Functions, Rice University, Houston, Texas and Tôhoku University, Sendai, Japan, 1966. (See Math. Comp., v. 21, 1967, p. 267, UMT 27.)
 [1]
 Daniel Shanks, ``On Gauss's class number problems,'' Math. Comp., v. 23, 1969, pp. 151163. MR 0262204 (41:6814)
 [2]
 K. E. Kloss et al., Class Number of Primes of the Form , RMT 10, Math. Comp., v. 23, 1969, pp. 213214.
 [1]
 A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904.
 [2]
 L. G. Diehl & J. H. Jordan, A Table of Gaussian Primes, UMT 19, Math. Comp., v. 21, 1967, pp. 260262.
 [3]
 Daniel Shanks, ``On the conjecture of Hardy and Littlewood concerning the number of primes of the form ,'' Math. Comp., v. 14, 1960, pp. 321332. (We check their count by from our Table 3.) MR 0120203 (22:10960)
 [4]
 Daniel Shanks & Larry P. Schmid, ``Variations on a theorem of Landau. Part I,'' Math. Comp., v. 20, 1966, Sect. 6, pp. 560561. MR 0210678 (35:1564)
 [1]
 Marvin Wunderlich, Tables of Fibonacci Entry Points, The Fibonacci Association, San Jose State College, San Jose, Calif., January 1965. (For a joint review of this and the following reference, see Math. Comp., v. 20, 1966, pp. 618619, RMT 87 and 88.)
 [2]
 Douglas Lind, Robert A. Morris & Leonard D. Shapiro, Tables of Fibonacci Entry Points, Part Two, The Fibonacci Association, San Jose State College, San Jose, Calif., September 1965.
 [3]
 John D. Fulton & William L. Morris, ``On arithmetical functions related to the Fibonacci numbers,'' Acta Arithmetica. (To appear.) MR 0250962 (40:4193)
 [4]
 D. D. Wall, ``Fibonacci series modulo ,'' Amer. Math. Monthly, v. 67, 1960, pp. 525532. MR 0120188 (22:10945)
 [5]
 Dov Jarden, Recurring Sequences, second edition, Riveon Lematematika, Jerusalem, 1966. (See Math. Comp., v. 23, 1969, pp. 212213, RMT 9.) MR 0197383 (33:5548)
 [1]
 S. W. Golomb, Polyominoes, Charles Scribner's Sons, New York, 1965, pp. 116118.
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571869996446
PII:
S 00255718(69)996446
Article copyright:
© Copyright 1969
American Mathematical Society
