Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the approximate minimization of functionals

Author: James W. Daniel
Journal: Math. Comp. 23 (1969), 573-581
MSC: Primary 65.30
MathSciNet review: 0247746
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers in general the problem of finding the minimum of a given functional $ f(u)$ over a set $ B$ by approximately minimizing a sequence of functionals $ {f_n}({u_n})$ over a "discretized" set $ {B_n}$; theorems are given proving the convergence of the approximating points $ {u_n}$ in $ {B_n}$ to the desired point $ u$ in $ B$. Applications are given to the Rayleigh-Ritz method, regularization, Chebyshev solution of differential equations, and the calculus of variations.

References [Enhancements On Off] (What's this?)

  • [1] L. È. Èl′sgol′c, Calculus of variations, Pergamon Press Ltd., London-Paris-Frankfurt, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR 0133032
  • [2] Jean-Pierre Aubin, Approximation des espaces de distributions et des opérateurs différentiels, Bull. Soc. Math. France Suppl. Mém. 12 (1967), 139 (French). MR 0227588
  • [3] Jean-Pierre Aubin, Evaluations des erreurs de troncature des approximations des espaces de Sobolev, J. Math. Anal. Appl. 21 (1968), 356–368 (French). MR 0223876,
  • [4] J.-P. Aubin & J. L. Lions, Unpublished Notes on Minimization, Private Communication.
  • [5] P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem, Numer. Math. 9 (1966/1967), 394–430. MR 0221761,
  • [6] P. G. Ciarlet, M. H. Schultz & R. S. Varga, "Numerical methods of high order accuracy for nonlinear boundary value problems. Monotone operators." (To appear.)
  • [7] James W. Daniel, Collectively compact sets of gradient mappings, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 270–279. MR 0236758
  • [8] D. Greenspan, On approximating extremals of functionals. II. Theory and generalizations related to boundary value problems for nonlinear differential equations, Internat. J. Engrg. Sci. 5 (1967), 571–588 (English, with French, German, Italian and Russian summaries). MR 0220448,
  • [9] R. J. Herbold, Constant Quadrature Schemes for the Numerical Solution of Boundary Value Problems by Variational Techniques, Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio, 1968.
  • [10] Werner Krabs, Einige Methoden zur Lösung des diskreten linearen Tschebyscheff-Problems, Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Hamburg, Hamburg, 1963 (German). MR 0164433
  • [11] E. S. Levitin and B. T. Poljak, convergence of minimizing sequences in problems on the relative extremum, Dokl. Akad. Nauk SSSR 168 (1966), 997–1000 (Russian). MR 0199016
  • [12] O. L. Mangasarian, Pseudo-convex functions, J. Soc. Indust. Appl. Math. Ser. A Control 3 (1965), 281–290. MR 0191659
  • [13] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
  • [14] J. B. Rosen, Approximate Solution and Error Bounds for Quasi-Linear Elliptic Boundary Value Problems, Univ. of Wisconsin, Computer Sciences Technical Report No. 30, 1968.
  • [15] Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
  • [16] A. N. Tihonov, Regularisation methods for optimal control problems, Dokl. Akad. Nauk SSSR 162 (1965), 763–765 (Russian). MR 0179023
  • [17] M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.30

Retrieve articles in all journals with MSC: 65.30

Additional Information

Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society