Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A method for solving nonlinear Volterra integral equations of the second kind

Author: Peter Linz
Journal: Math. Comp. 23 (1969), 595-599
MSC: Primary 65.75
MathSciNet review: 0247794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The approach given in this paper leads to numerical methods for Volterra integral equations which avoid the need for special starting procedures. Formulae for a typical fourth-order method are derived and some numerical examples presented. A convergence theorem is given for the method described.

References [Enhancements On Off] (What's this?)

  • [1] J. T. Day, A starting method for solving nonlinear Volterra integral equations, Math. Comp. 21 (1967), 179–188. MR 0223119,
  • [2] L. Fox and E. T. Goodwin, The numerical solution of non-singular linear integral equations, Philos. Trans. Roy. Soc. London. Ser. A. 245 (1953), 501–534. MR 0054355,
  • [3] P. Linz, The Numerical Solution of Volterra Integral Equations by Finite Difference Methods, MRC Technical Summary Report #825, Mathematics Research Center, University of Wisconsin, Madison, Wis., 1967.
  • [4] D. F. Mayers, Numerical Solution of Ordinary and Partial Differential Equations, Pergamon Press, Oxford and Addison-Wesley, Reading, Mass., 1962, Chapters 13, 14. MR 26 #4488.
  • [5] B. Noble, The numerical solution of nonlinear integral equations and related topics, Nonlinear Integral Equations (Proc. Advanced Seminar Conducted by Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1963) Univ. Wisconsin Press, Madison, Wis., 1964, pp. 215–318. MR 0173369
  • [6] P. Pouzet, Étude en Vue de leur Traitment Numérique d'Équations Intégrales et IntégroDifférentielles du Type de Volterra pour des Problèmes de Conditions Initiales, Thesis, University of Strassbourg, 1962.
  • [7] P. Pouzet, "Méthode d'intégration numérique des équations intégrales et intégro-différentielles du type de Volterra de seconde espèce. Formules de Runge-Kutta," Symposium on the Numerical Treatment of Ordinary Differential Equations, Integral and Integro-differential Equations, (Rome, 1960), Birkhäuser Verlag, Basel, 1960, pp. 362-368. MR 23 #B601.
  • [8] F. G. Tricomi, Integral equations, Pure and Applied Mathematics. Vol. V, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. MR 0094665
  • [9] Andrew Young, The application of approximate product integration to the numerical solution of integral equations, Proc. Roy. Soc. London Ser. A. 224 (1954), 561–573. MR 0063779,

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.75

Retrieve articles in all journals with MSC: 65.75

Additional Information

Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society