Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A method for solving nonlinear Volterra integral equations of the second kind

Author: Peter Linz
Journal: Math. Comp. 23 (1969), 595-599
MSC: Primary 65.75
MathSciNet review: 0247794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The approach given in this paper leads to numerical methods for Volterra integral equations which avoid the need for special starting procedures. Formulae for a typical fourth-order method are derived and some numerical examples presented. A convergence theorem is given for the method described.

References [Enhancements On Off] (What's this?)

  • [1] J. T. Day, "A starting method for solving nonlinear Volterra integral equations," Math. Comp., v. 21, 1967, pp. 179-188. MR 36 #6168. MR 0223119 (36:6168)
  • [2] L. Fox & E. T. Goodwin, "The numerical solution of non-singular linear integral equations," Philos. Trans. Roy. Soc. London Ser. A., v. 245, 1953, pp. 501-534. MR 14, 908. MR 0054355 (14:908f)
  • [3] P. Linz, The Numerical Solution of Volterra Integral Equations by Finite Difference Methods, MRC Technical Summary Report #825, Mathematics Research Center, University of Wisconsin, Madison, Wis., 1967.
  • [4] D. F. Mayers, Numerical Solution of Ordinary and Partial Differential Equations, Pergamon Press, Oxford and Addison-Wesley, Reading, Mass., 1962, Chapters 13, 14. MR 26 #4488.
  • [5] B. Noble, "The numerical solution of nonlinear integral equations and related topics," in Nonlinear Integral Equations, edited by P. M. Anselone, University of Wisconsin Press, Madison, Wis., 1963. MR 28 #4321. MR 0173369 (30:3582)
  • [6] P. Pouzet, Étude en Vue de leur Traitment Numérique d'Équations Intégrales et IntégroDifférentielles du Type de Volterra pour des Problèmes de Conditions Initiales, Thesis, University of Strassbourg, 1962.
  • [7] P. Pouzet, "Méthode d'intégration numérique des équations intégrales et intégro-différentielles du type de Volterra de seconde espèce. Formules de Runge-Kutta," Symposium on the Numerical Treatment of Ordinary Differential Equations, Integral and Integro-differential Equations, (Rome, 1960), Birkhäuser Verlag, Basel, 1960, pp. 362-368. MR 23 #B601.
  • [8] F. G. Tricomi, Integral Equations, Pure and Appl. Math., vol. V, Interscience, New York, 1957. MR 20 #1177. MR 0094665 (20:1177)
  • [9] A. Young, "The application of approximate product-integration to the numerical solution of integral equations," Proc. Roy. Soc. London Ser. A, v. 224, 1954, pp. 561-573. MR 16, 179. MR 0063779 (16:179b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.75

Retrieve articles in all journals with MSC: 65.75

Additional Information

Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society