On p. 953 under (4) Acceptance-rejection method, the senses of both inequalities should be reversed, so that they will correctly read

\[e^{-\left(\frac{x-1}{\sqrt{2}}\right)^2} \geq u_2 \quad \text{and} \quad (x - 1)^2 \leq -2(\ln u_2). \]

Lester Guttman

Argonne National Laboratory
Argonne, Illinois 60440

Editorial note: This correction has been made in the fifth and subsequent printings.

On p. 797, in Table 22.7 the entry in row C_{10} and column x^8 should read \(-10\), instead of \(-20\).

On p. 799, in Table 22.10, the entry in row L_8 and column x^9 should read 3265920, instead of 3269520.

Harry Björk

Royal Institute of Technology
Department of Numerical Analysis
S-100 44 Stockholm 70, Sweden

Editorial note: The first of these errata has been corrected in the sixth and subsequent printings.

In the course of computing character tables for the groups of order \(2^n\) (\(n \leq 6\)) the following errors were noted:

<table>
<thead>
<tr>
<th>Page</th>
<th>Group</th>
<th>(\alpha_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>(\Gamma_2c_2)</td>
<td>(abcd)</td>
</tr>
<tr>
<td>110</td>
<td>(\Gamma_2f)</td>
<td>(\alpha_3 = ac.bf.cg.dh.ijkl)</td>
</tr>
<tr>
<td>114</td>
<td>(\Gamma_2\varepsilon_1)</td>
<td>(\alpha_1 = ac.bd)</td>
</tr>
<tr>
<td>119</td>
<td>(\Gamma_2m_2)</td>
<td>(\alpha_2 = abcd)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma_n)</td>
<td>(\alpha_2 = eg.fh.ijkl)</td>
</tr>
<tr>
<td>120</td>
<td>(\Gamma_2r_2)</td>
<td>(\alpha_1 = ac.bd.eg.fh)</td>
</tr>
<tr>
<td>133</td>
<td>(\Gamma_3p)</td>
<td>(\alpha_4 = aA.bB.cCcD.D.E.fH.gE.hF.iJ.jK.kL.LII.mP.mN.nO.pO)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma_3q)</td>
<td>(\beta = aebfcgd.h.ijlokjn)</td>
</tr>
<tr>
<td>136</td>
<td>(\Gamma_4d)</td>
<td>(\alpha_2 = eg.fh.ijkl.mnop)</td>
</tr>
</tbody>
</table>
TABLE ERRATA

153 Γ_{5d} $\alpha_3 = ae.bf.cg.dh.im.jn.ko.lp$
157 Γ_{6c_2} $\alpha_3 = abcd.ehgf$
159 Γ_{6f} $\alpha_4 = eg.fh.ijkl.mpon$
163 Γ_{7e_2} $\alpha_4 = abcd.efgh$
164 Γ_{8a_2} $\alpha_5 = bd.eh.fg.in.jm.kp.lo$
166 Γ_{8d_2} $\alpha_5 = bd.eh.fg.in.jm.kp.lo.qrst$
170 Γ_{9d_2} $\alpha_6 = aecg.bhdf.im.jn.ko.lp.rt$
178 Γ_{10e_1} $\alpha_5 = im.jn.ko.lp$
190 Γ_{11b_2} $\alpha_4 = eg.fh.ijkl.mnop$
194 Γ_{12a_1} $\alpha_6 = ik.jl.efgh.mpon$
195 Γ_{13a_2} $\alpha_4 = eg.fh.ijkl.mpon$
202 Γ_{13a_4} $\alpha_6 = aick.bljd.epgn.fohm$
212 Γ_{17a_3} $\alpha_6 = bd.ef.gh.imjnkolp$
213 Γ_{17b_1} $\alpha_5 = ae.bf.cg.dh.jl.mnop$
Γ_{17c_1} $\alpha_5 = ae.bf.cg.dh.im.jn.ko.lp$
Γ_{17c_2} The entry at the base of the lattice should be Γ_{17c_2}.

John McKay

Atlas Computer Laboratory
Chilton-Didcot-Berkshire
England