The integral of the th power of the Voigt function

Author:
Alex Reichel

Journal:
Math. Comp. **23** (1969), 645-649

DOI:
https://doi.org/10.1090/S0025-5718-69-99861-5

MathSciNet review:
0247741

Full-text PDF

Abstract | References | Additional Information

Abstract: A series expansion is given for the computation of the integral over of the th power of the Voigt function for use in spectral line calculations with Doppler broadening. A nine significant figure table is presented for up to 25 and for a wide range of values of the second parameter on a microfiche card in this issue.

**[1]**I. I. Gurevich & I. Y. Pomeranchouk,*Proc. First Internat. Conf. Peaceful Uses Atomic Energy*, (Geneva), v. 5, 1955, p. 466, p. 649.**[2]**A. Keane & M. H. McKay, "An approximation arising theory of resonance absorption,"*Austral. J. Appl. Sci.*, v. 11, 1960, p. 321. MR**0115327 (22:6129)****[3]**M. H. McKay, "An improvement on Shapiro's approximation to a function occurring in the theory of resonance absorption,"*J. Nuclear Sci. Tech.*, v. 2, 4, 1965, p. 117.**[4]**J. L. Cook & D. Elliott, "The tabulation of three functions arising in nuclear resonance theory,"*Austral, J. Appl. Sci.*, v. 11, 1960, pp. 16-32. MR**22**#6130. MR**0115328 (22:6130)****[5]**A. Reichel, "Doppler broadening integrals and other relatives of the error function,"*J. Quant. Spet. Radiat. Transfer*, v. 8, 1968, p. 1601.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-69-99861-5

Article copyright:
© Copyright 1969
American Mathematical Society