The integral of the th power of the Voigt function

Author:
Alex Reichel

Journal:
Math. Comp. **23** (1969), 645-649

DOI:
https://doi.org/10.1090/S0025-5718-69-99861-5

MathSciNet review:
0247741

Full-text PDF

Abstract | References | Additional Information

Abstract: A series expansion is given for the computation of the integral over of the th power of the Voigt function for use in spectral line calculations with Doppler broadening. A nine significant figure table is presented for up to 25 and for a wide range of values of the second parameter on a microfiche card in this issue.

**[1]**I. I. Gurevich & I. Y. Pomeranchouk,*Proc. First Internat. Conf. Peaceful Uses Atomic Energy*, (Geneva), v. 5, 1955, p. 466, p. 649.**[2]**M. H. McKay and A. Keane,*A correction to the effective resonance integral in heterogeneous nuclear reactors to allow for fuel geometry*, Austral. J. Appl. Sci.**11**(1960), 1–15. MR**0115327****[3]**M. H. McKay, "An improvement on Shapiro's approximation to a function occurring in the theory of resonance absorption,"*J. Nuclear Sci. Tech.*, v. 2, 4, 1965, p. 117.**[4]**J. L. Cook and D. Elliott,*The tabulation of three functions arising in nuclear resonance theory.*, Austral. J. Appl. Sci.**11**(1960), 16–32. MR**0115328****[5]**A. Reichel, "Doppler broadening integrals and other relatives of the error function,"*J. Quant. Spet. Radiat. Transfer*, v. 8, 1968, p. 1601.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-69-99861-5

Article copyright:
© Copyright 1969
American Mathematical Society